zbMATH — the first resource for mathematics

Inverse problem of time-dependent heat sources numerical reconstruction. (English) Zbl 1219.65103
Authors’ abstract: We study the inverse problem of reconstructing a time-dependent heat source in the heat conduction equation using the temperature measurement specified at an internal point. Problems of this type have important applications in several fields of applied science. By the Green function method, the inverse problem is reduced to an operator equation of the first kind which is known to be ill-posed. The uniqueness of the solution for the inverse problem is obtained by the contraction mapping principle. A numerical algorithm on the basis of the Landweber iteration is designed to deal with the operator equation and some typical numerical experiments are also performed in the paper. The numerical results show that the proposed method is stable and the unknown heat source is recovered very well.

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R30 Inverse problems for PDEs
65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Beck, V.; Blackwell, B.; Clair, St.C.R., Inverse heat conduction, ill-posed problems, (1985), Wiley-Interscience New York · Zbl 0633.73120
[3] Cannon, J.R., Determination of an unknown heat source from overspecified boundary data, SIAM J. numer. anal., 5, 275-286, (1986) · Zbl 0176.15403
[4] Cannon, J.R.; Lin, Y., An inverse problem of finding a parameter in a semilinear heat equation, J. math. anal. appl., 145, 470-484, (1990) · Zbl 0727.35137
[5] Cannon, J.R., The one-dimensional heat equation, (1984), Addison-Wesley
[6] Dehghan, M., An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. math. model., 25, 743-754, (2001) · Zbl 0995.65098
[7] Dehghan, M., Determination of a control function in three-dimensional parabolic equations, Math. comput. simul., 61, 89-100, (2003) · Zbl 1014.65097
[8] Dehghan, M., Determination of a control parameter in the two-dimensional diffusion equation, Appl. numer. math., 37, 489-502, (2001) · Zbl 0982.65103
[9] Deng, Z.C.; Yu, J.N.; Yang, L., Optimization method for an evolutional type inverse heat conduction problem, J. phys. A: math. theor., 41, 035201, (2008), (20 pp.) · Zbl 1149.35079
[10] Deng, Z.C.; Yu, J.N.; Yang, L., Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. comput. simul., 77, 421-435, (2008) · Zbl 1141.65073
[11] Engl, H.W.; Hanke, M.; Neubauer, A., Regularization of inverse problems, (1996), Kluwer Academic Publishers Dordrecht · Zbl 0859.65054
[12] Friedman, A., Partial differential equations of parabolic type, (1964), Prentice-Hall Englewood Cliffs, NJ · Zbl 0144.34903
[13] Hon, Y.C.; Wei, T., A fundamental solution method for inverse heat conduction problem, Eng. anal. boundary elem., 28, 489-495, (2004) · Zbl 1073.80002
[14] Isakov, V., Inverse problems for partial differential equations, (1998), Springer New York · Zbl 0908.35134
[15] Johansson, T.; Lesnic, D., Determination of a spacewise dependent heat source, J. comput. appl. math., 209, 66-80, (2007) · Zbl 1135.35097
[16] Johansson, T.; Lesnic, D., A procedure for determining a spacewise dependent heat source and the initial temperature, Appl. anal., 87, 265-276, (2008) · Zbl 1133.35436
[17] Kirsch, A., An introduction to the mathematical theory of inverse problem, (1999), Springer New York
[18] Ladyzenskaya, O.; Solonnikov, V.; Ural’Ceva, N., Linear and quasilinear equations of parabolic type, (1968), American Mathematical Society Providence, KI
[19] Niliot, C.L.; Callet, P., Infrared thermography applied to the resolution of inverse heat conduction problems: recovery of heat line sources and boundary conditions, Rev. Gén. therm., 37, 629-643, (1998)
[20] Onyango, T.T.M.; Ingham, D.B.; Lesnic, D.; Slodička, M., Determination of a time-dependent heat transfer coefficient from non-standard boundary measurements, Math. comput. simul., 79, 1577-1584, (2009) · Zbl 1169.65091
[21] Özisik, M.N., Heat conduction, (1993), Wiley New York · Zbl 0625.76091
[22] Prilepko, A.I.; Orlovsky, D.G.; Vasin, I.A., Methods for solving inverse problems in mathematical physics, (2000), Marcel Dekker New York · Zbl 0947.35173
[23] Rundell, W., The determination of a parabolic equation from initial and final data, Proc. am. math. soc., 99, 637-642, (1987) · Zbl 0644.35093
[24] Silva Neto, A.J.; Özisik, M.N., Inverse problem of simultaneously estimating the timewise-varying strengths of two plane heat sources, J. appl. phys., 73, 5, 2132-2137, (1993)
[25] Silva Neto, A.J.; Özisik, M.N., Two-dimensional inverse heat conduction problem of estimating the time-varying strength of a line heat source, J. appl. phys., 71, 5357-5362, (1992)
[26] Stoer, J.; Bulirsch, R., Introduction to numerical analysis, (1980), Springer New York · Zbl 0423.65002
[27] Tikhonov, A.; Arsenin, V., Solutions of ill-posed problems, (1979), Geology Press Beijing · Zbl 0499.65030
[28] Wang, Z.W.; Liu, J.J., Identification of the pollution source from one-dimensional parabolic equation models, Appl. math. comput., (2008)
[29] Yan, L.; Fu, C.L.; Yang, F.L., The method of fundamental solutions for the inverse heat source problem, Eng. anal. boundary elem., 32, 216-222, (2008) · Zbl 1244.80026
[30] Yang, L.; Deng, Z.C.; Yu, J.N.; Luo, G.W., Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. comput. simul., 80, 314-326, (2009) · Zbl 1183.65118
[31] Yang, L.; Yu, J.N.; Deng, Z.C., An inverse problem of identifying the coefficient of parabolic equation, Appl. math. modelling, 32, 10, 1984-1995, (2008) · Zbl 1145.35468
[32] Yi, Z.; Murio, D.A., Source term identification in 1-D IHCP, Comput. math. appl., 47, 1921-1933, (2004) · Zbl 1063.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.