×

zbMATH — the first resource for mathematics

On the coupling of the homotopy perturbation method and Laplace transformation. (English) Zbl 1219.65121
Summary: A Laplace homotopy perturbation method is employed for solving one-dimensional non-homogeneous partial differential equations with a variable coefficient. This method is a combination of the Laplace transform and the homotopy perturbation method (LHPM). LHPM presents an accurate methodology to solve non-homogeneous partial differential equations with a variable coefficient. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as HPM, VIM, and ADM. The approximate solutions obtained by means of LHPM in a wide range of the problem’s domain were compared with those results obtained from the actual solutions, the homotopy perturbation method (HPM) and the finite element method. The comparison shows a precise agreement between the results, and introduces this new method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
44A10 Laplace transform
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rashidinia, J.; Mohammadi, R., Int. J. comput. math., 85, 5, (2008)
[2] Lin, Y.; Gao, X.J.; Xiao, M.Q., Numer. methods partial differential equations, 25, 2, (2009)
[3] Khan, Y., Int. J. nonlinear sci. numer. simul., 10, 11-12, (2009)
[4] Khan, Y.; Wu, Q., Comput. math. appl., (2010)
[5] Rostamian, M.; Barari, A.; Ganji, D.D., J. phys.: conf. ser., 96, (2008)
[6] Wazwaz, A.M., Appl. math. comput., 142, (2003)
[7] Jang, B., Appl. math. comput., 186, (2007)
[8] He, J.H., Comput. methods appl. mech. engrg., 178, (1999)
[9] He, J.H., Internat. J. non-linear mech., 35, (2000)
[10] He, J.H., Appl. math. comput., 135, (2003)
[11] He, J.H., Internat. J. modern phys. B, 20, (2006)
[12] He, J.H., Internat. J. modern phys. B, 20, 10, (2006)
[13] Ghorbani, A.; Saberi-Nadjafi, J., Comput. math. appl., 56, (2008)
[14] Odibat, Z.M., Appl. math. comput., 189, (2007)
[15] Yusufoglu, E., Comput. math. appl., 58, (2009)
[16] Abbasbandy, S., Appl. math. comput., 172, (2006)
[17] He, J.H., Chaos solitons fractals, 26, (2005)
[18] He, J.H., Phys. lett. A, 350, (2006)
[19] He, J.H., Appl. math. comput., 151, (2004)
[20] Wang, S.Q.; He, J.H., Chaos solitons fractals, 35, (2008)
[21] Cai, X.C.; Wu, W.Y.; Li, M.S., Int. J. nonlinear sci. numer. simul., 7, (2006)
[22] Cveticanin, L., Chaos solitons fractals, 30, (2006)
[23] Esmaeilpour, M.; Ganji, D.D., Phys. lett. A, 372, (2007) · Zbl 1217.76029
[24] Abbasbandy, S., Chaos solitons fractals, 30, (2006)
[25] Chun, C., Chaos solitons fractals, 34, (2007)
[26] Fathizadeh, M.; Rashidi, F., Chaos solitons fractals, 42, (2009)
[27] Hashim, I.; Chowdhury, M.S.H.; Mawa, S., Chaos solitons fractals, 36, (2008)
[28] Roohi, Ehsan, Phys. scr., 79, (2009)
[29] Omidvar, M.; Barari, A.; Momeni, M.; Ganji, D.D., Geomech. geoeng. int. J., 5, (2010)
[30] Hesameddini, E.; Latifizadeh, H., Int. J. nonlinear sci. numer. simul., 10, (2009)
[31] El-Tawil, Magdy A.; Al-Mulla, Noha A., Math. comput. modelling, 51, (2010)
[32] Sfahani, M.G.; Ganji, S.S.; Barari, A.; Mirgolbabaei, H.; Domairry, G., Earthq. eng. eng. vib., 9, (2010)
[33] Babolian, E.; Azizi, A.; Saeidian, J., Math. comput. modelling, 50, (2009)
[34] Qarnia, H.E., World J. modelling simul., 5, (2009)
[35] Barari, A.; Ghotbi, Abdoul R.; Barari, T.; Ganji, D.D., Int. J. appl. math. comput. sci, 1, (2009)
[36] Ghotbi, A.R.; Barari, A.; Omidvar, M.; Ganji, D.D., Appl. math. sci., 3, (2009)
[37] Rice, R.G.; Do, D.D., Applied mathematics and modeling for chemical engineers, (1995), John Wiley and Sons New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.