# zbMATH — the first resource for mathematics

A note on the fractional-order Volta’s system. (English) Zbl 1221.34017
Summary: We deal with the fractional-order Volta’s system. It is based on the concept of chaotic system, where the mathematical model of system contains fractional order derivatives. This system has simple structure and can display a double-scroll attractor. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate order Volta’s system with total order less than 3 which exhibits chaos are presented as well.

##### MSC:
 34A08 Fractional ordinary differential equations and fractional differential inclusions 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
FODE; ma2dfc
Full Text:
##### References:
 [1] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Int J bifurcat chaos, 8, 7, 1527-1539, (1998) · Zbl 0936.92006 [2] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Nonlinear noninteger order circuits and systems – an introduction, (2000), World Scientific Singapore · Zbl 0966.93006 [3] Ahmad, W.M., Hyperchaos in fractional order nonlinear systems, Chaos solitons fract, 26, 1459-1465, (2005) · Zbl 1100.37017 [4] Barbosa, R.S.; Tenreiro Machado, J.A.; Vinagre, B.M.; Calderón, A.J., Analysis of the van der Pol oscillator containing derivatives of fractional order, J vib control, 13, 9-10, 1291-1301, (2007) · Zbl 1158.70009 [5] Carlson GE, Halijak CA. Approximation of fractional capacitors $$(1 / s)^{1 / n}$$ by a regular Newton process. In: Proceedings of the sixth midwest symposium on circuit theory, Madison, Wisconsin, May 6-7, 1963. [6] Dorčák Ľ. Numerical models for simulation the fractional-order control systems, UEF-04-94. Košice, Slovakia: The Academy of Sciences, Institute of Experimental Physics; 1994. [7] Charef, A.; Sun, H.H.; Tsao, Y.Y.; Onaral, G., Fractal systems as represented by singularity function, IEEE trans autom control, 37, 9, 1465-1470, (1992) · Zbl 0825.58027 [8] Chen, Y.Q.; Vinagre, B.M.; Podlubny, I., Continued fraction expansion approaches to discretizing fractional order derivatives – an expository review, Nonlinear dyn, 38, 1-4, 155-170, (2004) · Zbl 1134.93300 [9] Deng, W.H.; Li, C.P., Chaos synchronization of the fractional Lu system, Phys A, 353, 61-72, (2005) [10] Deng, W., Short memory principle and a predictor – corrector approach for fractional differential equations, J comput appl math, 206, 174-188, (2007) · Zbl 1121.65128 [11] Deng, W., Numerical algorithm for the time fractional fokker – planck equation, J comput phys, 227, 1510-1522, (2007) · Zbl 1388.35095 [12] Deng, W.; Li, Ch.; Lu, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dyn, 48, 409-416, (2007) · Zbl 1185.34115 [13] Diethelm, K.; Ford, N.J.; Freed, A.D.; Luchko, Yu., Algorithms for the fractional calculus: a selection of numerical methods, Comput methods appl mech eng, 194, 743-773, (2005) · Zbl 1119.65352 [14] Ford N, Simpson A. The numerical solution of fractional differential equations: speed versus accuracy. Numerical Analysis Report 385. Manchester: Manchester Centre for Computational Mathematics; 2001. · Zbl 0976.65062 [15] Gao, X.; Yu, J., Chaos in the fractional order periodically forced complex duffing’s oscillators, Chaos solitons fract, 24, 1097-1104, (2005) · Zbl 1088.37046 [16] Hao, B., Elementary symbolic dynamics and chaos in dissipative systems, (1989), World Scientific Singapore · Zbl 0724.58001 [17] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., Chaos on a fractional chua’s system, IEEE trans circuits syst theory appl, 42, 8, 485-490, (1995) [18] Hwang, Ch.; Leu, J.F.; Tsay, S.Y., A note on time-domain simulation of feedback fractional-order systems, IEEE trans autom control, 47, 4, 625-631, (2002) · Zbl 1364.93772 [19] Li, Ch.; Chen, G., Chaos and hyperchaos in the fractional-order rossler equations, Phys A, 341, 55-61, (2004) [20] LePage, W.R., Complex variables and the Laplace transform for engineers, (1961), McGraw-Hill · Zbl 0094.30101 [21] Li, Ch.; Peng, G., Chaos in chen’s system with a fractional order, Chaos solitons fract, 22, 443-450, (2004) · Zbl 1060.37026 [22] Li Y, Chen YQ, Podlubny I, Cao Y. Mittag-Leffler stability of fractional order nonlinear dynamic system. In: Proceedings of the third IFAC workshop on fractional differentiation and its applications, Ankara, Turkey, 5-7 November 2008. [23] Lu, J.G.; Chen, G., A note on the fractional-order Chen system, Chaos solitons fract, 27, 685-688, (2006) · Zbl 1101.37307 [24] Lu, J.G., Chaotic dynamics and synchronization of fractional-order arneodo’s systems, Chaos solitons fract, 26, 1125-1133, (2005) · Zbl 1074.65146 [25] Lu, J.G., Chaotic dynamics and synchronization of fractional-order chua’s circuits with a piecewise-linear nonlinearity, Int J modern phys B, 19, 20, 3249-3259, (2005) · Zbl 1124.37309 [26] Marcos, M.daG.; Duarte, F.B.M.; Tenreiro Machado, J.A., Fractional dynamics in the trajectory control of redundant manipulators, Commun nonlinear sci numer simul, 13, 1836-1844, (2008) [27] Matignon D. Stability result on fractional differential equations with applications to control processing. In: IMACS-SMC proceedings, Lille, France, July; 1996. p. 963-8. [28] Matignon D. Stability properties for generalized fractional differential systems. In: Proceedings of fractional differential systems: models, methods and applications, vol. 5; 1998. p. 145-58. · Zbl 0920.34010 [29] Nakagava, M.; Sorimachi, K., Basic characteristics of a fractance device, IEICE trans fundam, E75-A, 12, 1814-1818, (1992) [30] Nimmo, S.; Evans, A.K., The effects of continuously varying the fractional differential order of chaotic nonlinear systems, Chaos solitons fract, 10, 7, 1111-1118, (1999) · Zbl 0980.34032 [31] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004 [32] Oustaloup, A., La derivation non entiere: theorie, synthese et applications, (1995), Hermes Paris, France · Zbl 0864.93004 [33] Oustaloup A, Sabatier J, Lanusse P, Malti R, Melchior P, Moreau X, et al. An overview of the CRONE approach in system analysis, modeling and identification, observation and control. In: Proceedings of the 17th World Congress IFAC, Seoul, Korea, July 6-11, 2008. p. 14254-65. [34] Parada, F.J.V.; Tapia, J.A.O.; Ramirez, J.A., Effective medium equations for fractional fick’s law in porous media, Phys A, 373, 339-353, (2007) [35] Petráš, I., Control of fractional-order chua’s system, J electr eng, 53, 7-8, 219-222, (2002) [36] Petráš, I.; Dorčák, Ľ., Fractional-order control systems: modelling and simulation, Fract calculus appl anal, 6, 2, 205-232, (2003) · Zbl 1113.93303 [37] Petráš, I., Chaos in the fractional-order volta’s system: modeling and simulation, Nonlinear dyn, (2008) [38] Petráš, I., A note on the fractional-order chua’s system, Chaos solitons fract, 38, 1, 140-147, (2008) [39] Petráš I. Stability of fractional-order systems with rational orders. Available from: http://arxiv.org/abs/0811.4102; 2008. [40] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010 [41] Podlubny, I.; Petráš, I.; Vinagre, B.M.; O’Leary, P.; Dorčák, Ľ., Analogue realization of fractional-order controllers, Nonlinear dyn, 29, 1-4, 281-296, (2002) · Zbl 1041.93022 [42] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract calculus appl anal, 5, 4, 367-386, (2002) · Zbl 1042.26003 [43] Podlubny, I., Fractional-order systems and $$\mathit{PI}^\lambda D^\mu$$-controllers, IEEE trans autom control, 44, 1, 208-213, (1999) [44] Podlubny, I., Matrix approach to discrete fractional calculus, Fract calculus appl anal, 3, 4, 359-386, (2000) · Zbl 1030.26011 [45] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.Q.; Vinagre Jara, B.M., Matrix approach to discrete fractional calculus. II: partial fractional differential equations, J comput phys, 228, 8, 3137-3153, (2009) · Zbl 1160.65308 [46] Vinagre, B.M.; Chen, Y.Q.; Petráš, I., Two direct tustin discretization methods for fractional-order differentiator/integrator, J franklin inst, 340, 349-362, (2003) · Zbl 1051.93031 [47] Tavazoei, M.S.; Haeri, M., Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET signal process, 1, 4, 171-181, (2007) [48] Tavazoei, M.S.; Haeri, M., A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A, 367, 102-113, (2007) · Zbl 1209.37037 [49] Tavazoei, M.S.; Haeri, M., Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear anal, 69, 1299-1320, (2008) · Zbl 1148.65094 [50] Tavazoei, M.S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Phys D, 237, 2628-2637, (2008) · Zbl 1157.26310 [51] Torvik, P.J.; Bagley, R.L., On the appearance of the fractional derivative in the behavior of real materials, Trans ASME, 51, 294-298, (1984) · Zbl 1203.74022 [52] Tseng, Ch.Ch., Design of FIR and IIR fractional order simpson digital integrators, Signal process, 87, 1045-1057, (2007) · Zbl 1186.94343 [53] Wang, J.C., Realizations of generalized warburg impedance with RC ladder networks and transmission lines, J electrochem soc, 134, 8, 1915-1920, (1987) [54] Westerlund, S., Dead matter has memory!, (2002), Causal Consulting Kalmar, Sweden [55] Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A., Determining Lyapunov exponents from a time series, Phys D, 16, 285-317, (1985) · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.