×

The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. (English) Zbl 1221.34068

Summary: We study the existence of multiple positive solutions for the nonlinear fractional differential equation boundary value problem \[ \begin{cases} D^\alpha_{0^+}u(t)+f(t,u(t))=0,\quad 0<t<1,\\ u(0)=u'(0)=u'(1)=0,\end{cases} \] where \(2<\alpha\leq 3\) is a real number and \(D^\alpha_{0^+}\) is the Riemann-Liouville fractional derivative. Using the properties of the Green’s function, the lower and upper solution method and a fixed-point theorem, some new existence criteria for singular and nonsingular fractional differential equation boundary value problems are established. As applications, examples are presented to illustrate the main results.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34A08 Fractional ordinary differential equations
34A37 Ordinary differential equations with impulses
47N20 Applications of operator theory to differential and integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equation, (1993), John Wiley New York · Zbl 0789.26002
[2] Oldham, K.B.; Spanier, J., The fractional calculus, (1974), Academic Press New York · Zbl 0428.26004
[3] Podlubny, I., Fractional differential equations, (1999), Academic Press New York/Lindon/Toronto · Zbl 0918.34010
[4] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integral and derivative: theory and applications, (1993), Gordon and Breach Switzerland · Zbl 0818.26003
[5] Agarwal, R.P., Formulation of Euler-larange equations for fractional variational problems, J math anal appl, 272, 368-379, (2002) · Zbl 1070.49013
[6] Weitzner, H.; Zaslavsky, G.M., Some applications of fractional equations, Commun nonlinear sci numer simul, 8, 3-4, 273-281, (2003) · Zbl 1041.35073
[7] Meral, F.C.; Royston, T.J.; Magin, R., Fractional calculus in viscoelasticity: an experimental study, Commun nonlinear sci numer simul, 15, 4, 939-945, (2010) · Zbl 1221.74012
[8] Machado, J.T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun nonlinear sci numer simul, 16, 3, 1140-1153, (2011) · Zbl 1221.26002
[9] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J math anal appl, 204, 609-625, (1996) · Zbl 0881.34005
[10] Zhang, S., The existence of a positive solution for nonlinear fractional differential equation, J math anal appl, 252, 804-812, (2000) · Zbl 0972.34004
[11] Zhang, S., Existence of positive solutions for some class of nonlinear fractional equation, J math anal appl, 278, 136-148, (2003) · Zbl 1026.34008
[12] Hashim, I.; Abdulaziz, O.; Momani, S., Homotopy analysis method for fractional ivps, Commun nonlinear sci numer simul, 14, 3, 674-684, (2009) · Zbl 1221.65277
[13] Al-Mdallal, M.; Syam, M.I.; Anwar, M.N., A collocation-shooting method for solving fractional boundary value problems, Commun nonlinear sci numer simul, 15, 12, 3814-3822, (2010) · Zbl 1222.65078
[14] Jafari, H.; Daftardar-Gejji, V., Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl math comput, 180, 700-706, (2006) · Zbl 1102.65136
[15] Ahmad, B.; Nieto, J.J., Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations, Abst appl anal, (2009), Article ID 494720 · Zbl 1186.34009
[16] Belmekki, M.; Nieto, J.J.; Rodríguez-López, R., Existence of periodic solution for a nonlinear fractional differential equation, Boundary value problems, (2009), Article ID 324561 · Zbl 1181.34006
[17] Qiu, T.; Bai, Z., Existence of positive solutions for singular fractional equations, Electron J differ equat, 146, 1-9, (2008)
[18] Mena, J.C.; Harjani, J.; Sadarangani, K., Existence and uniqueness of positive and nondecreasing solutions for a class of singular fractional boundary value problems, Boundary value problems, (2009), Article ID 421310 · Zbl 1182.34005
[19] Yuan, C.; Jiang, D.; Xu, X., Singular positone and semipositone boundary value problems of nonlinear fractional differential equations, Math prob eng, (2009), Article ID 535209 · Zbl 1185.34008
[20] Jiang, D.; Yuan, C., The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear anal, 72, 710-719, (2009) · Zbl 1192.34008
[21] Shi, A.; Zhang, S., Upper and lower solutions method and a fractional differential equation boundary value problem, Electron J qual theor differ equat, 30, 1-13, (2009)
[22] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J math anal appl, 311, 495-505, (2005) · Zbl 1079.34048
[23] Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron J differ equat, 36, 1-12, (2006)
[24] Liang, S.; Zhang, J., Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear anal, 71, 5545-5550, (2009) · Zbl 1185.26011
[25] Xu, X.; Jiang, D.; Yuan, C., Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear anal, 71, 10, 4676-4688, (2009) · Zbl 1178.34006
[26] El-Shahed, M., Positive solutions for boundary value problems of nonlinear fractional differential equation, ABS appl anal, (2007), Article ID 10368 · Zbl 1149.26012
[27] Kilbas, A.A.; Srivastava, H.H.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[28] Leggett, R.W.; Williams, L.R., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana univ math J, 28, 673-688, (1979) · Zbl 0421.47033
[29] Krasnoselskii, M.A., Positive solution of operator equation, (1964), Noordhoff Groningen
[30] Isac, G., Leray-Schauder type alternatives, Complemantarity problems and variational inequalities, (2006), Springer US · Zbl 1095.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.