×

On the asymptotic behavior of a class of third order nonlinear neutral differential equations. (English) Zbl 1221.34173

The authors employ comparison principles to establish sufficient conditions which ensure that every solution of certain third-order nonlinear neutral differential equations is oscillatory or converges to zero. Some illustrative examples are also included.

MSC:

34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations
34K25 Asymptotic theory of functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akın-Bohner E., Došlá Z., Lawrence B., Oscillatory properties for three-dimensional dynamic systems, Nonlinear Anal., 2008, 69(2), 483-494 http://dx.doi.org/10.1016/j.na.2007.05.035 · Zbl 1161.34018
[2] Baculíková B., Džurina J., Oscillation of third-order neutral differential equations, Math. Comput. Modelling, 2010, 52(1-2), 215-226 http://dx.doi.org/10.1016/j.mcm.2010.02.011
[3] Baculíková B., Elabbasy E.M., Saker S.H., Džurina J., Oscillation criteria for third-order nonlinear differential equations, Math. Slovaca, 2008, 58(2), 201-220 http://dx.doi.org/10.2478/s12175-008-0068-1
[4] Baĭnov D.D., Mishev D.P., Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991
[5] Džurina J., Asymptotic properties of third order delay differential equations, Czechoslovak Math. J., 1995, 45(120)(3), 443-448
[6] Džurina J., Asymptotic properties of the third order delay differential equations, Nonlinear Anal., 1996, 26(1), 33-39 http://dx.doi.org/10.1016/0362-546X(94)00239-E
[7] Džurina J., Oscillation theorems for neutral differential equations of higher order, Czechoslovak Math. J., 2004, 54(129)(1), 107-117 http://dx.doi.org/10.1023/B:CMAJ.0000027252.29549.bb
[8] Džurina J., Baculíková B., Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ., 2010, No. 43
[9] Erbe L.H., Kong Q., Zhang B.G., Oscillation Theory for Functional-Differential Equations, Monogr. Textbooks Pure Appl. Math., 190, Marcel Dekker, New York, 1995 · Zbl 0821.34067
[10] Grace S.R., Agarwal R.P., Pavani R., Thandapani E., On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput., 2008, 202(1), 102-112 http://dx.doi.org/10.1016/j.amc.2008.01.025 · Zbl 1154.34368
[11] Greguš M., Third Order Linear Differential Equations, Math. Appl. (East European Ser.), Reidel, Dordrecht, 1987
[12] Györi I., Ladas G., Oscillation Theory of Delay Differential Equations, Oxford Math. Monogr., Clarendon Press, Oxford, 1991
[13] Hassan T.S., Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling, 2009, 49(7-8), 1573-1586 http://dx.doi.org/10.1016/j.mcm.2008.12.011
[14] Kiguradze I.T., Chanturia T.A., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Math. Appl. (Soviet Ser.), 89, Kluwer Acad. Publ., Dordrecht, 1993
[15] Kusano T., Naito M., Comparison theorems for functional-differential equations with deviating arguments, J. Math. Soc. Japan, 1981, 33(3), 509-533 http://dx.doi.org/10.2969/jmsj/03330509 · Zbl 0494.34049
[16] Lacková D., The asymptotic properties of the solutions of the nth order functional neutral differential equations, Appl. Math. Comput., 2003, 146(2-3), 385-392 http://dx.doi.org/10.1016/S0096-3003(02)00590-8
[17] Ladde G.S., Lakshmikantham V., Zhang B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Monogr. Textbooks Pure Appl. Math., 110, Marcel Dekker, New York, 1987 · Zbl 0622.34071
[18] Lazer A.C., The behavior of solutions of the differential equation y’” + p(x)y’ + q(x)y = 0, Pacific J. Math., 1966, 17(3), 435-466 · Zbl 0143.31501
[19] Parhi N., Das P., Asymptotic property of solutions of a class of third-order differential equations, Proc. Amer. Math. Soc., 1990, 110(2), 387-393 · Zbl 0721.34025
[20] Parhi N., Padhi S., On asymptotic behavior of delay-differential equations of third order, Nonlinear Anal., 1998, 34(3), 391-403 http://dx.doi.org/10.1016/S0362-546X(97)00600-7 · Zbl 0935.34063
[21] Parhi N., Padhi S., Asymptotic behaviour of solutions of third order delay-differential equations, Indian J. Pure Appl. Math., 2002, 33(10), 1609-1620 · Zbl 1025.34068
[22] Philos Ch.G., On the existence of nonoscillatory solutions tending to zero at 1 for differential equations with positive delays, Arch. Math. (Basel), 1981, 36(2), 168-178 · Zbl 0463.34050
[23] Saker S.H., Oscillation criteria of third-order nonlinear delay differential equations, Math. Slovaca, 2006, 56(4), 433-450 · Zbl 1141.34040
[24] Saker S.H., Džurina J., On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohemica, 2010, 135(3), 225-237
[25] Tanaka K., Asymptotic analysis of odd order ordinary differential equations, Hiroshima Math. J., 1980, 10(2), 391-408 · Zbl 0453.34033
[26] Tiryaki A., Aktas M.F., Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 2007, 325(1), 54-68 http://dx.doi.org/10.1016/j.jmaa.2006.01.001 · Zbl 1110.34048
[27] Zhong J., Ouyang Z., Zou S., Oscillation criteria for a class of third-order nonlinear neutral differential equations, J. Appl. Anal. (in press) · Zbl 1276.34026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.