Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. (English) Zbl 1221.37211

Summary: We apply the active sliding mode control technique to realize the modified projective synchronization of chaotic systems. The disturbances are considered both in the drive system and the response system. The sufficient conditions for the modified projective synchronization both the non-identical and identical chaotic systems are presented. The corresponding numerical simulations are provided to illuminate the effectiveness of the proposed active sliding mode controllers.


37N35 Dynamical systems in control
93B12 Variable structure systems
34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
Full Text: DOI


[1] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 8, 821-824, (1990) · Zbl 0938.37019
[2] Nana, B.; Woafo, P.; Domngang, S., Chaotic synchronization with experimental application to secure communications, Commun nonlinear sci numer simul, 14, 2266-2276, (2009)
[3] Carlos, A.; Doris, C.; Pedro, P.; Eduardo, S., Synchronization effects using a piecewise linear map-based spiking-bursting neuron model, Neurocomputing, 6, 1116-1119, (2006)
[4] Liu, J.M.; Chen, H.F.; Tang, S., Synchronization of chaos in semiconductor lasers, Nonlinear anal, 47, 5741-5751, (2001) · Zbl 1042.78511
[5] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys rev lett, 64, 1196-1199, (1990) · Zbl 0964.37501
[6] Li, T.; Yu, J.J.; Wang, Z., Dynamical analysis, delay-range-dependent synchronization criterion for lur’e systems with delay feedback control, Commun nonlinear sci numer simul, 14, 1796-1803, (2009) · Zbl 1221.93224
[7] Chen HH, Sheu GJ, Lin YL, Chen CS. Chaos synchronization between two different chaotic systems via nonlinear feedback control. Nonlinear Anal. doi:10.1016/j.na.2008.10.069.
[8] Lei, Y.M.; Xu, W.; Zheng, H.C., Synchronization of two chaotic nonlinear gyros using active control, Phys lett A, 343, 153-158, (2005) · Zbl 1194.34090
[9] Yassen, M.T., Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys lett A, 360, 582-587, (2007) · Zbl 1236.93086
[10] Hassan, S.; Aria, A., Adaptive synchronization of two chaotic systems with stochastic unknown parameters, Commun nonlinear sci numer simul, 14, 508-519, (2009) · Zbl 1221.93246
[11] Yan, J.J.; Yang, Y.S.; Chiang, T.Y.; Chen, C.Y., Robust synchronization of unified chaotic systems via sliding mode control, Chaos solit fract, 34, 947-954, (2007) · Zbl 1129.93489
[12] Li, G.H., Modified projective synchronization of chaotic system, Chaos solit fract, 32, 1786-1790, (2007) · Zbl 1134.37331
[13] Tang, Y.; Fang, J.A., General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys lett A, 372, 1816-1826, (2008) · Zbl 1220.37027
[14] Park, J.H., Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J comput appl math, 213, 288-293, (2008) · Zbl 1137.93035
[15] Zhang, Q.; Chen, S.H.; Hu, Y.M.; Wang, C.P., Synchronizing the noise-perturbed unified chaotic system by sliding mode control, Phys A: stat theor phys, 371, 317-324, (2006)
[16] Li WL, Chang KM. Robust synchronization of drive – response chaotic systems via adaptive sliding mode control. Chaos Solit Fract. doi:10.1016/j.chaos.2007.06.067.
[17] Mohammad, H.; Emadzadeh, A.A., Synchronizing different chaotic systems using active sliding mode control, Chaos solit fract, 31, 119-129, (2007) · Zbl 1142.93394
[18] Zhang, H.; Ma, X.K.; Liu, W.Z., Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos solit fract, 21, 1249-1257, (2004) · Zbl 1061.93514
[19] Mohammad, H.; Mohammad, S.T.; Naseh, M.R., Synchronization of uncertain chaotic systems using active sliding mode control, Chaos solit fract, 33, 1230-1239, (2007) · Zbl 1138.93045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.