×

zbMATH — the first resource for mathematics

Double delayed feedback control for the stabilization of unstable steady states in chaotic systems. (English) Zbl 1221.37217
Summary: Double delayed feedback control (DDFC) method with two mutually prime delays is analytically analyzed for the stabilization of unstable steady states. Some stabilization criteria are proposed by utilizing Lyapunov theory and matrix inequality technique. The relation between the feedback gain matrices and the controller delays can be implicitly represented by the given criterion. Numerical results are also presented.

MSC:
37N35 Dynamical systems in control
34D20 Stability of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, G.R.; Dong, X., From chaos to order: methodologies, perspectives, and applications, (1998), World Scientific Publishing Company Singapore
[2] Boccaletti, S.; Grebogi, C.; Lai, Y.C.; Mancini, H.; Maza, D., The control of chaos: theory and application, Phys rep, 329, 103-197, (2000)
[3] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.L.; Zhou, C.S., The synchronization of chaotic systems, Phys rep, 366, 1-101, (2002) · Zbl 0995.37022
[4] Lu, J.F., Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems, Commun nonlinear sci numer simulat, 13, 1851-1859, (2008) · Zbl 1221.37216
[5] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys rev lett, 64, 1196-1199, (1990) · Zbl 0964.37501
[6] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 8, 821-824, (1990) · Zbl 0938.37019
[7] Tanaka, K.; Ikeda, T.; Wang, H.O., A unified approach to controlling chaos via an LMI-based fuzzy control system design, IEEE trans circuits syst I, 45, 1021-1040, (1998) · Zbl 0951.93046
[8] Yang, T.; Yang, L.B.; Yang, C.M., Impulsive control of Lorenz system, Physica D, 110, 18-24, (1997) · Zbl 0925.93414
[9] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans auto contr, 48, 5, 829-831, (2003) · Zbl 1364.93691
[10] Rafikov, M.; Balthazar, J.M., On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Commun nonlinear sci numer simulat, 13, 1246-1255, (2008) · Zbl 1221.93230
[11] Lu, J.Q.; Cao, J.D., Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos, 15, 4, 043901, (2005) · Zbl 1144.37378
[12] Cao, J.D.; Lu, J.Q., Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16, 1, 013133, (2006) · Zbl 1144.37331
[13] Huang, D.B., Stabilizing near-nonhyperbolic chaotic systems with applications, Phys rev lett, 93, 214101, (2004)
[14] Cao, J.D.; Li, H.X.; C Ho, D.W., Synchronization criteria of lur’e systems with time-delay feedback control, Chaos soliton fract, 23, 4, 1285-1298, (2005) · Zbl 1086.93050
[15] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys lett A, 170, 6, 421-428, (1992)
[16] Pyragas, V.; Pyragas, K., Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation, Phys rev E, 73, 3, 036215, (2006)
[17] Xu, S.Y.; Lam, J.; Zou, Y., Delay-dependent approach to stabilization of time-delay chaotic systems via standard and delayed feedback controllers, Int J bifur chaos, 15, 4, 1455-1465, (2005) · Zbl 1089.93017
[18] Guan, X.P.; Feng, G.; Chen, C.L., A stabilization method of chaotic systems based on full delayed feedback controller design, Phys lett A, 348, 3-6, 210-221, (2006) · Zbl 1195.37022
[19] Park, J.H.; Kwon, O.M., A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos solitons fract, 23, 2, 495-501, (2005) · Zbl 1061.93507
[20] Ahlborn, A.; Parlitz, U., Stabilizing unstable steady states using multiple delay feedback control, Phys rev lett, 93, 26, 264101, (2004)
[21] Ahlborn, A.; Parlitz, U., Controlling dynamical systems using multiple delay feedback control, Phys rev E, 72, 1, 016206, (2005)
[22] Yang, L.; Liu, Z.R.; Mao, J.M., Controlling hyperchaos, Phys rev lett, 84, 1, 67-70, (2000)
[23] Baer, T., Large-amplitude fluctuations due to longitudinal mode-coupling in diode-pumped intracavity-doubled ND-YAG lasers, J opt soc am B, 3, 9, 1175-1180, (1986)
[24] Myneni, K.; Barr, T.A.; Corron, N.J.; Pethel, S.D., New method for the control of fast chaotic oscillations, Phys rev lett, 83, 11, 2175-2178, (1999)
[25] Pyragas, K., Control of chaos via extended delay feedback, Phys lett A, 206, 5-6, 323-330, (1995) · Zbl 0963.93523
[26] Socolar, J.E.S.; Gauthier, D.J., Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps, Phys rev E, 57, 6, 6589-6595, (1998)
[27] Tian, Y.P.; Chen, G.R., A separation principle for dynamical delayed output feedback control of chaos, Phys lett A, 284, 1, 31-42, (2001) · Zbl 0985.37049
[28] Nakajima, H., Delayed feedback control with state predictor for continuous-time chaotic systems, Int J bifur chaos, 12, 5, 1067-1077, (2002) · Zbl 1051.93527
[29] Bielawski, S.; Derozier, D.; Glorieux, P., Controlling unstable periodic-orbit by a delayed continuous feedback, Phys rev E, 49, 2, R971-R974, (1994)
[30] Namajunas, A., Stabilization of an unstable steady-state in a MacKey-Glass system, Phys lett A, 204, 255-262, (1995)
[31] Hikihara, T., An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos, Phys lett A, 211, 29-36, (1996)
[32] Ushio, T., Limitation of delayed feedback control in nonlinear discrete-time systems, IEEE trans circuits syst I, 43, 815-816, (1996)
[33] Nakajima, H.; Ueda, Y., Limitation of generalized delayed feedback control, Physica D, 111, 1-4, 143-150, (1998) · Zbl 0927.93030
[34] Yamamoto, S., Dynamic delayed feedback controllers for chaotic discrete-time systems, IEEE trans circuits syst I, 48, 785-789, (2001) · Zbl 1159.93329
[35] Hövel, P.; Schöll, E., Control of unstable steady states by time-delayed feedback methods, Phys rev E, 72, 4, 046203, (2005)
[36] Xu, S.Y.; Lam, J., Improved delay-dependent stability criteria for time-delay systems, IEEE trans auto contr, 50, 3, 384-387, (2005) · Zbl 1365.93376
[37] Kolmanovskii, V.B.; Myshkis, A.D., Introduction to the theory and applications of functional differential equations, (1999), Kluwer Academic Publishers Dordrecht · Zbl 0917.34001
[38] Hale, J.K.; Lunel, S.M.V., Introduction to functional differential equations, (1993), Springer New York
[39] Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia · Zbl 0816.93004
[40] ElGhaoui, L.; Oustry, F.; AitRami, M., A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE trans auto contr, 42, 8, 1171-1176, (1997) · Zbl 0887.93017
[41] Lorenz, E.N., Deterministic non-periodic flows, J atmos sci, 20, 130-141, (1963) · Zbl 1417.37129
[42] Nesterov, Y.; Nemirovskii, A., Interior-point polynomial methods in convex programming, (1994), Society for Industrial and Applied Mathematics · Zbl 0824.90112
[43] Gahinet, P.; MathWorks, I., LMI control toolbox for use with MATLAB, Mathworks, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.