Adomian decomposition method for nonlinear differential-difference equations. (English) Zbl 1221.65209

Summary: We extend the Adomian decomposition method (ADM) to find the approximate solutions for the nonlinear differential-difference equations (NDDEs), such as the discretized mKdV lattice equation, the discretized nonlinear Schrödinger equation and the Toda lattice equation. By comparing the approximate solutions with the exact analytical solutions, we find the extend method for NDDEs is of good accuracy.


65L99 Numerical methods for ordinary differential equations
Full Text: DOI


[1] Fermi, E.; Pasta, J.; Ulam, S., Collected papers of enrico Fermi II, (1965), University of Chicago Press Chicago (IL)
[2] Scott, A.C.; Macheil, L., Binding energy versus nonlinearity for a small stationary soliton, Phys lett A, 98, 87-88, (1983)
[3] Sievers, A.J.; Takeno, S., Intrinsic localized modes in anharmonic crystals, Phys rev lett, 61, 970-973, (1988)
[4] Su, W.P.; Schrieffer, J.R.; Heege, A.J., Solitons in polyacetylene, Phys rev lett, 42, 1698-1701, (1979)
[5] Davydov, A.S., The theory of contraction of proteins under their excitation, J theor biol, 38, 559-569, (1973)
[6] Marquii, P.; Bilbault, J.M.; Rernoissnet, M., Observation of nonlinear localized modes in an electrical lattice, Phys rev E, 51, 6127-6133, (1995)
[7] Eisenberg, H.S.; Silberberg, Y.; Morandotti, R.; Boyd, A.R.; Aitchison, J.S., Discrete spatial optical solitons in waveguide arrays, Phys rev lett, 81, 3383-3386, (1998)
[8] Morandotti, R.; Peschel, U.; Aitchison, J.S.; Eisenberg, H.S.; Silberberg, Y., Dynamics of discrete solitons in optical waveguide arrays, Phys rev lett, 83, 2726-2729, (1999)
[9] Suris, Yu.B., New integrable systems related to the relativistic Toda lattice, J phys A: math gen, 30, 1745-1761, (1997) · Zbl 1001.37508
[10] Suris, Yu.B., On some integrable systems related to the Toda lattice, J phys A: math gen, 30, 2235-2249, (1997) · Zbl 0935.37037
[11] Suris, Yu.B., A discrete-time relativistic Toda lattice, J phys A: math gen, 29, 451-465, (1996) · Zbl 0916.58014
[12] Suris YuB. Miura transformations for Toda-type integrable systems, with applications to the problem of integrable discretizations, Sfb288 Preprint 367. Department of Mathematics, Technical University Berlin, Berlin, Germany, 2001.
[13] Suris YuB. The problem of integrable discretization: Hamiltonian approach. A skeleton of the book, Sfb288 Preprint 479. Department of Mathematics, Technical University Berlin, Berlin, Germany, 2002.
[14] Adomian, G., Stochastic system, (1983), Academic Press New York · Zbl 0504.60067
[15] Adomian, G., Solving frontier problem of physics: the decomposition method, (1994), Kluwer Academic Publishers Boston · Zbl 0802.65122
[16] Adomian, G., Solution of the thomas – fermi equation, Appl math lett, 11, 131-133, (1998) · Zbl 0947.34501
[17] Wazwaz, Abdul-Majid, A computational approach to soliton solutions of the kadomtsev – petviashvili equation, Appl math comput, 123, 205-217, (2001) · Zbl 1024.65098
[18] Wazwaz, Abdul-Majid, The decomposition method applied to systems of partial differential equations and to the reaction – diffusion Brusselator model, Appl math comput, 110, 251-264, (2000) · Zbl 1023.65109
[19] Kaya, D.; El-Sayed, S.M., Numerical soliton-like solutions of the potential kadomtsev – petviashvili equation by the decomposition method, Phys lett A, 320, 192-199, (2003) · Zbl 1065.35219
[20] El-Danaf, Talaat S.; Ramadan, Mohamed A.; Abd Alaal, Faysal E.I., The use of Adomian decomposition method for solving the regularized long-wave equation, Chaos soliton fract, 26, 747-757, (2005) · Zbl 1073.35010
[21] Abdou, M.A., J quant spectrosc radiat transfer, 95, 407, (2005)
[22] Ablowitz, M.J.; Ladic, J.F., On the solution of a class of nonlinear partial difference equations, Stud appl math, 57, 1-12, (1977) · Zbl 0384.35018
[23] Dai, C.Q.; Zhang, J.F., Jacobian elliptic function method for nonlinear differential-difference equations, Chaos soliton fract, 27, 1042-1047, (2006) · Zbl 1091.34538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.