×

Influence of heat transfer on a peristaltic transport of Herschel-Bulkley fluid in a non-uniform inclined tube. (English) Zbl 1221.76269

Commun. Nonlinear Sci. Numer. Simul. 14, No. 12, 4100-4113 (2009); erratum ibid. 15, No. 12, 4241 (2010).
Summary: Peristaltic transport in a two-dimensional non-uniform tube filled with Herschel–Bulkley fluid is studied under the assumptions of long wavelength and low Reynold number. The fluid flow is investigated in the wave frame of reference moving with the velocity of the peristaltic wave. Exact solution for the velocity field, the temperature profile, the stream functions and the pressure gradient are obtained. The physical behavior of \(\tau , n, \alpha \) and \(\varphi \) on the pressure rise versus flow rate are discussed through graphs. At the end of the article trapping phenomena for Herschel–Bulkley and also for Newtonian, Bingham and power law (which are the special cases of Herschel–Bulkley fluid) fluid are discussed.

MSC:

76Z05 Physiological flows
76A10 Viscoelastic fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C35 Physiological flow
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Latham TW. Fluid motion in a peristaltic pump, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge; 1966.
[2] Elshehawey, E.F.; Eladabe, N.T.; Elghazy, E.M.; Ebaid, A., Peristaltic transport in an asymmetric channel through a porous medium, Appl math comput, 182, 140-150, (2006) · Zbl 1149.76670
[3] Hayat, T.; Ahmed, N.; Ali, N., Effects of an endoscope and the magnetic field on the peristalsis involving Jeffrey fluid, Commun nonlinear sci numer simul, 13, 1581-1591, (2008) · Zbl 1221.76078
[4] Kothandapani, M.; Srinivas, S., Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel, Int J non-linear mech, 43, 915-924, (2008)
[5] Abd El-Naby, A.H.; El-Misiery, A.E.M., Effects of an endoscope and generalized Newtonian fluid on peristaltic motion, Appl math comput, 128, 19-35, (2002) · Zbl 1126.76403
[6] Li, M.; Brasseur, J.G., Non-steady peristaltic transport in finite-length tubes, J fluid mech, 248, 129-151, (1993) · Zbl 0777.76102
[7] Misra, J.C.; pandey, S.K., A mathematical model for oesophagal swallowing of a food-bolus, Appl math comput, 33, 997-1009, (2001) · Zbl 0965.92020
[8] Srivastava, L.M.; Srivastava, V.P., Peristaltic transport of blood: Casson model-II, J biomech, 17, 821-829, (1982)
[9] Seshadri, V.; Hasan, Z.; Gupta, B.B., Peristaltic pumping in non-uniform distensible tubes with different wave forms, J biophys med nucl, 8, 9-14, (1984)
[10] Brasseur, S.; Lu, N.Q., The influence of a peripherical layer of different viscosity on peristaltic pumping with Newtonian fluid, J fluid mech, 174, 495-519, (1987)
[11] Hayat, T.; Ali, N., Peristaltic motion of a Jeffrey fluid under the effect of magnetic field in a tube, Commun nonlinear sci numer simul, 13, 1343-1352, (2008) · Zbl 1221.76016
[12] Sankar, D.S.; Hemalatha, K., A non-Newtonian fluid flow model for blood flow through a catheterized artery-steady flow, Appl math model, 372, 5321-5328, (2006)
[13] Ebaid, A., A new numerical solution for the MHD peristaltic flow of a biofluid with variable viscosity in circular cylindrical tube via Adomian decomposition method, Phys A, 42, 754-759, (2007)
[14] Vajravelu, K.; Radhakrishnamacharya, G.; Radhakrishnamurty, V., Peristaltic flow and heat transfer in a vertical porous annulus with long wave approximation, Int J non-linear mech, 42, 754-759, (2007) · Zbl 1200.76192
[15] Mekheimer, Kh.S.; Abd elmaboud, Y., The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope, Phys A, 12, 1-9, (2007)
[16] Hayat, T.; Wang, Y.; Siddiqui, A.M.; Hutter, K.; Asghar, S., Peristaltic transport of a third-order fluid in a circular cylindrical tube, Math models methods appl sci, 12, 1691-1706, (2003) · Zbl 1041.76002
[17] Hariharan, Prasanna; Seshadri, V.; Banerjee, Rupak K., The peristaltic transport of a non-Newtonian fluid in a diverging tube with different wave forms hariharan, Math comput model, 11, 13-22, (2007)
[18] Mekheimer, Kh.S., Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels, Appl math comput, 153, 763-777, (2004) · Zbl 1041.92006
[19] Vajravelu, K.; Sreenadh, S.; Ramesh Babu, V., Peristaltic pumping of a herschel – bulkley fluid in a channel, Appl math comput, 169, 726-735, (2005) · Zbl 1079.76007
[20] Vajravelu, K.; Sreenadh, S.; Ramesh Babu, V., Peristaltic transport of a herschel – bulkley fluid in a an inclined tube, Int J non-linear mech, 40, 83-90, (2005) · Zbl 1295.76039
[21] Srinivas, S.; Kothandapani, M., Peristaltic transport in an asymmetric channel with heat transfer. A note, Int commun heat mass transfer, 35, 1-9, (2007)
[22] Radhakrishnamacharya, G.; Radhakrishna Murthy, V., Heat transfer to peristaltic transport in a non-uniform channel, Def sci J, 43, 275-280, (1993)
[23] Eberhart, R.C.; Shitzer, A., Heat transfer in medicine and biology, (1985), Springer
[24] Mekheimer, Kh.S.; Abd elmaboud, Y., The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope, Phys A, 335, 1-9, (2007)
[25] Radhakrishnamacharya, G.; Srinivasulu, Ch., Influence of wall properties on peristaltic transport with heat transfer, C R mecanique, 335, 369-373, (2007) · Zbl 1144.76067
[26] Hayat, T.; Qureshi, M.U.; Hussain, Q., Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space, Appl math model, 33, 1862-1873, (2009) · Zbl 1205.76254
[27] Eldabe, N.T.M.; El-Sayed, M.F.; Ghaly, A.Y.; Sayed, H.M., Effect mixed convection heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity, Arch appl mech, 78, 599-624, (2008) · Zbl 1169.76057
[28] Nadeem S, Akbar Noreen Sher. Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of Adomian decomposition method. Commun Nonlinear Sci Numer Simul, in press. doi:10.1016/j.cnsns.2008.09.010. · Zbl 1425.76307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.