# zbMATH — the first resource for mathematics

Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. (English) Zbl 1221.93227
Summary: Stability analysis of the fractional-order modified Autonomous Van der Pol–Duffing (MAVPD) circuit is studied using the fractional Routh–Hurwitz criteria. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than 3. Furthermore, the fractional Routh–Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh–Hurwitz conditions and using specific choice of linear controllers, it is shown that the fractional-order MAVPD system is controlled to its equilibrium points; however, its integer-order counterpart is not controlled. Moreover, chaos synchronization of MAVPD system is found only in the fractional-order case when using a specific choice of nonlinear control functions. This shows the effect of fractional order on chaos control and synchronization. Synchronization is also achieved using the unidirectional linear error feedback coupling approach. Numerical results show the effectiveness of the theoretical analysis.

##### MSC:
 93D15 Stabilization of systems by feedback 34A08 Fractional ordinary differential equations and fractional differential inclusions 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37N35 Dynamical systems in control
FracPECE
Full Text:
##### References:
 [1] Butzer, P.L.; Westphal, U., An introduction to fractional calculus, (2000), World Scientific Singapore · Zbl 0987.26005 [2] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Nonlinear noninteger order circuits and systems, (2000), World Scientific Singapore · Zbl 0966.93006 [3] () [4] Ahmed, E.; Elgazzar, A.S., On fractional order differential equations model for nonlocal epidemics, Physica A, 379, 607-614, (2007) [5] El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A., On the fractional-order logistic equation, Appl math lett, 20, 817-823, (2007) · Zbl 1140.34302 [6] Ahmad, W.M.; El-Khazali, R., Fractional-order dynamical models of love, Chaos soliton fract, 33, 1367-1375, (2007) · Zbl 1133.91539 [7] Bagley, R.L.; Calico, R.A., Fractional order state equations for the control of viscoelastically damped structures, J guid control dyn, 14, 304-311, (1991) [8] Sun, H.H.; Abdelwahab, A.A.; Onaral, B., Linear approximation of transfer function with a pole of fractional order, IEEE trans auto contr, 29, 441-444, (1984) · Zbl 0532.93025 [9] Ichise, M.; Nagayanagi, Y.; Kojima, T., An analog simulation of noninteger order transfer functions for analysis of electrode process, J electroanal chem, 33, 253-265, (1971) [10] Heaviside, O., Electromagnetic theory, (1971), Chelsea New York · JFM 30.0801.03 [11] Kusnezov, D.; Bulgac, A.; Dang, G.D., Quantum levy processes and fractional kinetics, Phys rev lett, 82, 1136-1139, (1999) [12] Caputo, M., Linear models of dissipation whose Q is almost frequency independent-II, Geophys J R astron soc, 13, 529-539, (1967) [13] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010 [14] Ben Adda, F., Geometric interpretation of the fractional derivative, J fract calc, 11, 21-52, (1997) · Zbl 0907.26005 [15] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract calc appl anal, 5, 367-386, (2002) · Zbl 1042.26003 [16] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys rev lett, 91, 034101, (2003) [17] Hartley, T.T.; Lorenzo, C.F.; Qammer, H.K., Chaos in a fractional order chua’s system, IEEE trans circ syst I, 42, 485-490, (1995) [18] Li, C.G.; Chen, G., Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 55-61, (2004) [19] Li, C.P.; Peng, G.J., Chaos in chen’s system with a fractional order, Chaos soliton fract, 22, 443-450, (2004) · Zbl 1060.37026 [20] Wang, X.Y.; Wang, M.J., Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, 17, 033106, (2007) · Zbl 1163.37382 [21] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys rev lett, 64, 821-824, (1990) · Zbl 0938.37019 [22] Matouk, A.E., Dynamical analysis feedback control and synchronization of Liu dynamical system, Nonlinear anal theor meth appl, 69, 3213-3224, (2008) · Zbl 1176.34060 [23] Ahmad, W.M.; Harb, A.M., On nonlinear control design for autonomous chaotic systems of integer and fractional orders, Chaos soliton fract, 18, 693-701, (2003) · Zbl 1073.93027 [24] Li, C.G.; Liao, X.F.; Yu, J.B., Synchronization of fractional order chaotic systems, Phys rev E, 68, 067203, (2003) [25] Li, C.G.; Chen, G., Chaos in the fractional order Chen system and its control, Chaos soliton fract, 22, 549-554, (2004) · Zbl 1069.37025 [26] Zhou, T.; Li, C.P., Synchronization in fractional-order differential systems, Physica D, 212, 111-125, (2005) · Zbl 1094.34034 [27] Deng, W.H.; Li, C.P., Chaos synchronization of the fractional Lü system, Physica A, 353, 61-72, (2005) [28] Gao, X.; Yu, J.B., Synchronization of two coupled fractional-order chaotic oscillators, Chaos soliton fract, 26, 141-145, (2005) · Zbl 1077.70013 [29] Li, C.P.; Deng, W.H.; Xu, D., Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 171-185, (2006) [30] Lu, J.G., Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal, Chaos soliton fract, 27, 519-525, (2006) · Zbl 1086.94007 [31] Li, C.P.; Yan, J., The synchronization of three fractional differential systems, Chaos soliton fract, 32, 751-757, (2007) [32] Peng, G., Synchronization of fractional order chaotic systems, Phys lett A, 363, 426-432, (2007) · Zbl 1197.37040 [33] Xingyuan, W.; Yijie, H., Projective synchronization of fractional order chaotic system based on linear separation, Phys lett A, 372, 435-441, (2008) · Zbl 1217.37035 [34] Peng, G.; Jiang, Y.; Chen, F., Generalized projective synchronization of fractional order chaotic systems, Physica A, 387, 3738-3746, (2008) [35] Yu, Y.; Li, H.X., The synchronization of fractional-order Rössler hyperchaotic systems, Physica A, 387, 1393-1403, (2008) [36] Shao, S., Controlling general projective synchronization of fractional order Rössler systems, Chaos soliton fract, 39, 1572-1577, (2009) · Zbl 1197.37041 [37] Zhu, H.; Zhou, S.; Zhang, J., Chaos and synchronization of the fractional-order chua’s system, Chaos soliton fract, 39, 1595-1603, (2009) · Zbl 1197.94233 [38] Deng, H.; Li, T.; Wang, Q.; Li, H., A fractional-order hyperchaotic system and its synchronization, Chaos soliton fract, 41, 962-969, (2009) · Zbl 1198.34115 [39] Zhu, H.; Zhou, S.; He, Z., Chaos synchronization of the fractional-order chen’s system, Chaos soliton fract, 41, 2733-2740, (2009) · Zbl 1198.93206 [40] Wang, X.Y.; Song, J.M., Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun nonlinear sci numer simulat, 14, 3351-3357, (2009) · Zbl 1221.93091 [41] Matouk, A.E., Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system, Phys lett A, 373, 2166-2173, (2009) · Zbl 1229.34099 [42] Matouk, A.E.; Agiza, H.N., Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J math anal appl, 341, 259-269, (2008) · Zbl 1131.37037 [43] Fan, Q.J., Horseshoe in a modified Van der pol – duffing circuit, Appl math comput, 210, 436-440, (2009) · Zbl 1171.37314 [44] Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A.A., On some routh – hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys lett A, 358, 1-4, (2006) · Zbl 1142.30303 [45] Diethelm, K.; Ford, N.J., Analysis of fractional differential equations, J math anal appl, 265, 229-248, (2002) · Zbl 1014.34003 [46] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron trans numer anal, 5, 1-6, (1997) · Zbl 0890.65071 [47] Diethelm, K.; Ford, N.J.; Freed, A.D., A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn, 29, 3-22, (2002) · Zbl 1009.65049 [48] Diethelm, K.; Freed, A.D., The fracpece subroutine for the numerical solution of differential equations of fractional order, (), 57-71 [49] Tavazoei, M.S.; Haeri, M., A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A, 367, 102-113, (2007) · Zbl 1209.37037 [50] Jiang, G.P.; Tang, K.S.; Chen, G., A simple global synchronization criterion for coupled chaotic systems, Chaos soliton fract, 15, 925-935, (2003) · Zbl 1065.70015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.