×

A family of multimodal dynamic maps. (English) Zbl 1222.39003

Summary: We introduce a family of multimodal logistic maps with a single parameter. The maps domain is partitioned in subdomains according to the maximal number of modals to be generated and each subdomain contains one logistic map. The number of members of a family is equal to the maximal number of modals. Bifurcation diagrams and basins of attraction of fixed points are constructed for the family of chaotic logistic maps.

MSC:

39A10 Additive difference equations
39A30 Stability theory for difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Li, T-Y.; Yorke, J.A., Period three implies chaos, The am math mon, 82, 10, 985-992, (1975) · Zbl 0351.92021
[2] May, R.M., Simple mathematical models with very complicated dynamics, Nature, 261, 5560, 459-467, (1976) · Zbl 1369.37088
[3] Elaydi, S.N., Discrete chaos, (2000), Chapman & Hall/CRC · Zbl 0945.37010
[4] Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P., On devaney’s definition of chaos, The am math mon, 99, 332-334, (1992) · Zbl 0758.58019
[5] Banerjee, S.; Rahjan, P.; Grebogi, C., Bifurcations in two-dimensional piecewise smooth maps theory and applications in switching circuits, IEEE trans circ syst I, 47, 633-643, (2000) · Zbl 1050.37511
[6] Deane, J.H.B., Chaos in a current-mode controlled boost dc – dc converter, IEEE trans circ syst I, 39, 680-683, (1992)
[7] Pisarchik, A.N.; Flores-Carmona, N.J.; Carpio-Valadez, M., Encryption and decryption of images with chaotic map lattices, Chaos: interdiscip J nonlinear sci, 16, 3, 033118, (2006) · Zbl 1151.94560
[8] Pisarchik, A.N.; Zanin, M., Image encryption with chaotically coupled chaotic maps, Physica D, 237, 2638-2648, (2008) · Zbl 1148.94431
[9] Patidar, V.; Pareek, N.K.; Sud, K.K., A new substitution – diffusion based image cipher using chaotic standard and logistic maps, Commun nonlinear sci numer simul, 14, 3056-3075, (2009)
[10] Tang, Y.; Wang, Z.; Fang, J., Image encryption using chaotic coupled map lattices with time-varying delays, Commun nonlinear sci numer simul, 15, 2456-2468, (2010) · Zbl 1222.94012
[11] Yang, H.; Wong, K.W.; Liao, X.; Zhang, W.; Wei, P., A fast image encryption and authentication scheme based on chaotic maps, Commun nonlinear sci numer simul, 15, 3507-3517, (2010) · Zbl 1222.94043
[12] Yoon, J.W.; Kim, H., An image encryption scheme with a pseudorandom permutation based on chaotic maps, Commun nonlinear sci numer simul, 15, 3998-4006, (2010) · Zbl 1222.94041
[13] Pisarchik, A.N.; Ruiz-Oliveras, F.R., Optical chaotic communication using generalized and complete synchronization, IEEE J quant electron, 46, 3, 279-284, (2010)
[14] Suneel, M., Electronic circuit realization of the logistic map, Sadhana, 31, Part 1, 69-78, (2006)
[15] Campos-Cantón, I.; Campos-Cantón, E.; Murgu ı´a, J.S.; Rosu, H.C., A simple electronic circuit realization of the tent map, Chaos, solitons fract, 42, 1, 12-16, (2009)
[16] Verhulst, P.F., Notice sur la loi que la population poursuit dans son accroissement, Corres math phys, 10, 113-121, (1838)
[17] Arroyo, D.; Alvarez, G.; Amigó, J.M., Estimation of the control parameter from symbolic sequences: unimodal maps with variable critical point, Chaos, 19, 023125, (2009) · Zbl 1309.37017
[18] N. Mihalache, Two counterexamples in rational and interval dynamics, 2008, 1-49, 0810.1474v1.
[19] de Melo, W.; van Strien, S., One-dimensional dynamics, () · Zbl 0737.58020
[20] Smania, D., Phase space universality for multimodal maps, Bull braz math soc new ser, 36, 2, 225-274, (2005) · Zbl 1100.37024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.