×

A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces. (English) Zbl 1222.47104

Summary: We introduce two iterative schemes by the general iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a \(k\)-strictly pseudo-contractive non-self mapping in the setting of real Hilbert spaces. Our results improve and extend the corresponding results given by many others.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H05 Monotone operators and generalizations
47H06 Nonlinear accretive operators, dissipative operators, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. stud., 63, 123-145, (1994) · Zbl 0888.49007
[2] Moudafi, A.; Thera, M., (), 187-201
[3] Plubtieng, S.; Punpaeng, R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 336, 455-469, (2007) · Zbl 1127.47053
[4] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 331, 506-515, (2007) · Zbl 1122.47056
[5] Tada, A.; Takahashi, W., Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. optim. theory appl., 133, 359-370, (2007) · Zbl 1147.47052
[6] Marino, G.; Xu, H.K., A general iterative method for nonexpansive mappings in Hilbert spaces, J. math. anal. appl., 318, 43-52, (2006) · Zbl 1095.47038
[7] Qin, X.; Shang, M.; Kang, S.M., Strong convergence theorems of modified Mann iterative process for strict pseudo-contractions in Hilbert spaces, Nonlinear anal., 70, 1257-1264, (2009) · Zbl 1225.47107
[8] Ceng, L.-C., An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. comput. appl. math., 223, 967-974, (2009) · Zbl 1167.47307
[9] Iiduka, H.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear anal., 61, 341-350, (2005) · Zbl 1093.47058
[10] Combettes, P.L.; Hirstoaga, A., Equilibrium programming in Hilbert spaces, J. nonlinear convex anal., 6, 117-136, (2005) · Zbl 1109.90079
[11] Zhou, H., Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert space, Nonlinear anal., 69, 456-462, (2008) · Zbl 1220.47139
[12] Browder, F.E.; Petryshyn, W.V., Construction of fixed points of nonlinear mappings in Hilbert space, J. math. anal. appl., 20, 197-228, (1967) · Zbl 0153.45701
[13] Chang, S.S., Some problems and results in the study of nonlinear analysis, Nonlinear anal. TMA, 30, 7, 4197-4208, (1997) · Zbl 0901.47036
[14] Xu, H.K., Viscosity approximation methods for nonexpansive mappings, J. math. anal. appl., 298, 279-291, (2004) · Zbl 1061.47060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.