×

zbMATH — the first resource for mathematics

Fractional variational calculus for nondifferentiable functions. (English) Zbl 1222.49026
Summary: We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie’s modified Riemann-Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.

MSC:
49K05 Optimality conditions for free problems in one independent variable
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002
[2] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego, CA · Zbl 0918.34010
[3] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., (), Translated from the 1987 Russian original · Zbl 0818.26003
[4] Ross, B.; Samko, S.G.; Love, E.R., Functions that have no first order derivative might have fractional derivatives of all orders less than one, Real anal. exchange, 20, 1, 140-157, (1994-1995) · Zbl 0820.26002
[5] Jumarie, G., On the representation of fractional Brownian motion as an integral with respect to \((\operatorname{d} t)^a\), Appl. math. lett., 18, 7, 739-748, (2005) · Zbl 1082.60029
[6] Jumarie, G., Modified riemann – liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. math. appl., 51, 9-10, 1367-1376, (2006) · Zbl 1137.65001
[7] Jumarie, G., Fractional partial differential equations and modified riemann – liouville derivative new methods for solution, J. appl. math. comput., 24, 1-2, 31-48, (2007) · Zbl 1145.26302
[8] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified riemann – liouville derivative for non-differentiable functions, Appl. math. lett., 22, 3, 378-385, (2009) · Zbl 1171.26305
[9] Jumarie, G., Laplace’s transform of fractional order via the Mittag-Leffler function and modified riemann – liouville derivative, Appl. math. lett., 22, 11, 1659-1664, (2009) · Zbl 1181.44001
[10] Jumarie, G., Analysis of the equilibrium positions of nonlinear dynamical systems in the presence of coarse-graining disturbance in space, J. appl. math. comput., 32, 2, 329-351, (2010) · Zbl 1184.93067
[11] Jumarie, G., Cauchy’s integral formula via modified riemann – liouville derivative for analytic functions of fractional order, Appl. math. lett., 23, 12, 1444-1450, (2010) · Zbl 1202.30068
[12] Agrawal, O.P., Formulation of euler – lagrange equations for fractional variational problems, J. math. anal. appl., 272, 1, 368-379, (2002) · Zbl 1070.49013
[13] Almeida, R.; Torres, D.F.M., Calculus of variations with fractional derivatives and fractional integrals, Appl. math. lett., 22, 12, 1816-1820, (2009) · Zbl 1183.26005
[14] Almeida, R.; Torres, D.F.M., Leitmann’s direct method for fractional optimization problems, Appl. math. comput., 217, 3, 956-962, (2010) · Zbl 1200.65049
[15] Baleanu, D.; Muslih, S.I., Lagrangian formulation of classical fields within riemann – liouville fractional derivatives, Phys. scr., 72, 2-3, 119-121, (2005) · Zbl 1122.70360
[16] Frederico, G.S.F.; Torres, D.F.M., Fractional conservation laws in optimal control theory, Nonlinear dynam., 53, 3, 215-222, (2008) · Zbl 1170.49017
[17] Mozyrska, D.; Torres, D.F.M., Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal process., 91, 3, 379-385, (2011) · Zbl 1203.94046
[18] Agrawal, O.P., Generalized euler – lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. vib. control, 13, 9-10, 1217-1237, (2007) · Zbl 1158.49006
[19] Almeida, R.; Torres, D.F.M., Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. nonlinear sci. numer. simul., 16, 3, 1490-1500, (2011) · Zbl 1221.49038
[20] Baleanu, D.; Agrawal, Om.P., Fractional Hamilton formalism within caputo’s derivative, Czech. J. phys., 56, 10-11, 1087-1092, (2006) · Zbl 1111.37304
[21] Frederico, G.S.F.; Torres, D.F.M., Fractional noether’s theorem in the riesz – caputo sense, Appl. math. comput., 217, 3, 1023-1033, (2010) · Zbl 1200.49019
[22] Malinowska, A.B.; Torres, D.F.M., Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. math. appl., 59, 9, 3110-3116, (2010) · Zbl 1193.49023
[23] Mozyrska, D.; Torres, D.F.M., Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. math., 26, 2, 210-221, (2010) · Zbl 1224.49048
[24] Bastos, N.R.O.; Ferreira, R.A.C.; Torres, D.F.M., Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete contin. dyn. syst., 29, 2, 417-437, (2011) · Zbl 1209.49020
[25] Bastos, N.R.O.; Ferreira, R.A.C.; Torres, D.F.M., Discrete-time fractional variational problems, Signal process., 91, 3, 513-524, (2011) · Zbl 1203.94022
[26] Cresson, J., Fractional embedding of differential operators and Lagrangian systems, J. math. phys., 48, 3, 033504, (2007), 34 pp · Zbl 1137.37322
[27] El-Nabulsi, R.A.; Torres, D.F.M., Fractional action-like variational problems, J. math. phys., 49, 5, 053521, (2008), 7 pp · Zbl 1152.81422
[28] Klimek, M., Lagrangian fractional mechanics—a noncommutative approach, Czech. J. phys., 55, 11, 1447-1453, (2005)
[29] Atanacković, T.M.; Konjik, S.; Pilipović, S., Variational problems with fractional derivatives: euler – lagrange equations, J. phys. A, 41, 9, 095201, (2008), 12 pp · Zbl 1175.49020
[30] Jumarie, G., From Lagrangian mechanics fractal in space to space fractal schrödinger’s equation via fractional taylor’s series, Chaos solitons fractals, 41, 4, 1590-1604, (2009) · Zbl 1198.70019
[31] Almeida, R.; Malinowska, A.B.; Torres, D.F.M., A fractional calculus of variations for multiple integrals with application to vibrating string, J. math. phys., 51, 033503, (2010), 12 pp · Zbl 1309.49003
[32] Filatova, D.; Grzywaczewski, M.; Osmolovskii, N., Optimal control problem with an integral equation as the control object, Nonlinear anal., 72, 3-4, 1235-1246, (2010) · Zbl 1190.49033
[33] Jumarie, G., An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear anal. RWA, 11, 1, 535-546, (2010) · Zbl 1195.37054
[34] Jumarie, G., Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. application to fractional black – scholes equations, Insurance math. econom., 42, 1, 271-287, (2008) · Zbl 1141.91455
[35] Kolwankar, K.M., Decomposition of Lebesgue-Cantor devil’s staircase, Fractals, 12, 4, 375-380, (2004) · Zbl 1304.28007
[36] Jumarie, G., Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions, Appl. math. model., 32, 5, 836-859, (2008) · Zbl 1138.60324
[37] van Brunt, B., The calculus of variations, (2004), Springer New York · Zbl 1039.49001
[38] Almeida, R.; Torres, D.F.M., Hölderian variational problems subject to integral constraints, J. math. anal. appl., 359, 2, 674-681, (2009) · Zbl 1169.49016
[39] Almeida, R.; Torres, D.F.M., Isoperimetric problems on time scales with nabla derivatives, J. vib. control, 15, 6, 951-958, (2009) · Zbl 1273.49024
[40] Malinowska, A.B.; Torres, D.F.M., Necessary and sufficient conditions for local Pareto optimality on time scales, J. math. sci., 161, 6, 803-810, (2009) · Zbl 1192.49022
[41] Malinowska, A.B.; Sidi Ammi, M.R.; Torres, D.F.M., Composition functionals in fractional calculus of variations, Commun. frac. calc., 1, 1, 32-40, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.