×

A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. (English) Zbl 1222.74044


MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO;2-5 · Zbl 0987.74079
[2] DOI: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081
[3] DOI: 10.1016/j.finel.2007.05.009
[4] DOI: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K · Zbl 0989.74067
[5] DOI: 10.1016/0020-7225(72)90039-0 · Zbl 0247.73005
[6] Hughes T. J. R., The Finite Element Method (1987) · Zbl 0634.73056
[7] DOI: 10.1007/s00466-006-0057-6 · Zbl 1178.74182
[8] DOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057
[9] DOI: 10.1201/9781420040586
[10] DOI: 10.1142/9789812564405
[11] Liu G. R., Finite Element Method: A Practical Course (2003)
[12] Liu G. R., An Introduction to MFree Methods and Their Programming (2005)
[13] DOI: 10.1142/S0219876205000661 · Zbl 1137.74303
[14] DOI: 10.1142/S0219876206001132 · Zbl 1198.74120
[15] DOI: 10.1007/s00466-006-0075-4 · Zbl 1169.74047
[16] DOI: 10.1002/nme.1968 · Zbl 1194.74432
[17] Liu G. R., Computers and Structures
[18] DOI: 10.1002/nme.2204 · Zbl 1158.74532
[19] Liu G. R., J. Sound. Vib.
[20] Liu G. R., Computational Mechanics
[21] Liu G. R., Computer Methods in Applied Mechanics and Engineering
[22] Liu G. R., International Journal for Numerical Methods in Engineering
[23] DOI: 10.1086/112164
[24] DOI: 10.1137/0903027 · Zbl 0498.76010
[25] DOI: 10.1016/0020-7683(68)90014-0 · Zbl 0174.41601
[26] DOI: 10.1007/s00466-006-0154-6 · Zbl 1176.76100
[27] Pian T. H. H., Hybrid and Incompatible Finite Element Methods (2006) · Zbl 1110.65003
[28] Simo J. C., Computational Inelasticity (1998) · Zbl 0934.74003
[29] Timoshenko S. P., Theory of Elasticity (1970) · Zbl 0266.73008
[30] DOI: 10.1002/nme.489 · Zbl 1098.74741
[31] Wu H. C., Variational Principle in Elasticity and Applications (1982)
[32] DOI: 10.1016/j.physleta.2005.09.036
[33] DOI: 10.1142/S0219876207001308 · Zbl 1198.74123
[34] DOI: 10.1002/nme.2050 · Zbl 1194.74543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.