×

Adaptive sliding mode control in a novel class of chaotic systems. (English) Zbl 1222.93124

Summary: We propose a robust adaptive sliding mode control strategy for an introduced class of uncertain chaotic systems. Using the sliding mode control technique and based on Lyapunov stability theory, a time varying sliding surface is determined and an adaptive gain of the robust control law will be tuned to stabilize the new chaotic class. Unlike many well-known methods of the sliding mode control, no knowledge on the bound of uncertainty and disturbance is required. Simulation results are demonstrated for several chaotic examples to illustrate the effectiveness of the proposed adaptive sliding mode control scheme.

MSC:

93C40 Adaptive control/observation systems
34H10 Chaos control for problems involving ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
93B12 Variable structure systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Vicha, T.; Dohnal, M., Qualitative feature extractions of chaotic systems, Chaos solitons fract, 38, 364-373, (2008) · Zbl 1155.37318
[2] Yu, W., Passive equivalence of chaos in Lorenz system, IEEE trans circuits syst I, 46, 876-878, (1999)
[3] Xu, W.G.; Shen, H.Z.; Hu, D.P.; Lei, A.Z., Impulse tuning of Chua chaos, Int J eng sci, 43, 75-280, (2009)
[4] Ueta, T.; Chen, G., Bifurcation analysis of chen’s attractor, Int J bifurc chaos, 10, 1917-1931, (2000) · Zbl 1090.37531
[5] Rafikov, M.; Balthazar, J.M., On an optimal control design for rossler system, Phys lett A, 333, 241-245, (2004) · Zbl 1123.49300
[6] Arman, K.-B.; Kia, F.; Naser, P.; Henry, L., A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun nonlinear sci numer simulat, 14, 3, 863-879, (2009) · Zbl 1221.94049
[7] Xiao, M.; Cao, J., Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control, Commun nonlinear sci numer simulat, 14, 8, 3379-3388, (2009) · Zbl 1221.34165
[8] El-Gohary, A., Chaos and optimal control of equilibrium states of tumor system with drug, Chaos solitons fract, 41, 1, 425-435, (2009) · Zbl 1198.37121
[9] Huang, C.-F.; Cheng, K.-H.; Yan, J.-J., Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties, Commun nonlinear sci numer simulat, 14, 6, 2784-2792, (2009)
[10] Xiang, T.; Wong, K.-W.; Liao, X., An improved chaotic cryptosystem with external key, Commun nonlinear sci numer simulat, 13, 9, 1879-1887, (2008) · Zbl 1221.94070
[11] Cai, N.; Jing, Y.; Zhang, S., Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun nonlinear sci numer simulat, 15, 6, 1613-1620, (2010) · Zbl 1221.37211
[12] Wang, H.; Han, Z.-Z.; Xie, Q.-Y.; Zhang, W., Sliding mode control for chaotic systems based on LMI, Commun nonlinear sci numer simulat, 14, 4, 1410-1417, (2009) · Zbl 1221.93049
[13] Roopaei, M.; Zolghadri Jahromi, M.; Jafari, S., Adaptive gain fuzzy sliding mode control for the synchronization of nonlinear chaotic gyros, Chaos: an interdisciplinary J nonlinear sci, 19, 1, 013125-013129, (2009) · Zbl 1311.93049
[14] Roopaei, M.; Zolghadri Jahromi, M., Synchronization of two different chaotic systems using novel adaptive fuzzy sliding mode control, Chaos: an interdisciplinary J nonlinear sci, 18, 3, 033133-033139, (2008) · Zbl 1309.34075
[15] Roopaei, M.; Zolghadri, M.; Meshksar, S., Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems, Commun nonlinear sci numer simulat, 14, 9-10, 3670-3681, (2009) · Zbl 1221.93157
[16] Dadras, S., Sliding mode control for uncertain new chaotic dynamical system, Chaos solitons fract, 41, 4, 1857-1862, (2009) · Zbl 1198.34114
[17] Liu, C.; Liu, T.; Liu, L.; Liu, K., A new chaotic attractor, Chaos solitons fract, 22, 1031-1338, (2004) · Zbl 1060.37027
[18] Vincent, U.E., Synchronization of identical and non-identical 4-D chaotic systems using active control, Chaos solitons fract, 37, 1057-1065, (2008) · Zbl 1153.37359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.