×

Robust stability analysis for a class of fractional order systems with uncertain parameters. (English) Zbl 1222.93171

Summary: The research of robust stability for fractional order linear time-invariant (FO-LTI) interval systems with uncertain parameters has become a hot issue. In this paper, it is the first time to consider robust stability of uncertain parameters FO-LTI interval systems, which have deterministic linear coupling relationship between fractional order and other model parameters. Linear matrix inequalities (LMI) methods are used, and a criterion for checking asymptotical stability of this class of systems is presented. One numerical illustrative example is given to verify the correctness of the conclusions.

MSC:

93D09 Robust stability
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Torvik, P.J.; Bagley, R.L., On the appearance of the fractional derivative in the behavior of real materials, Journal of applied mechanics, 51, 2, 294-298, (1984) · Zbl 1203.74022
[2] de Espíndola, J.J.; Bavastri, C.A.; Lopes, E.M.O., On the passive control of vibrations with viscoelastic dynamic absorbers of ordinary and pendulum types, Journal of the franklin institute, 347, 1, 102-115, (2010) · Zbl 1298.74119
[3] Wu, X.; Li, J.; Chen, G., Chaos in the fractional order unified system and its synchronization, Journal of the franklin institute, 345, 4, 392-401, (2008) · Zbl 1166.34030
[4] Jumarie, G., Fractional multiple birth-death processes with birth probabilities λi(δt)α+o((δt)α), Journal of the franklin institute, 347, 10, 1797-1813, (2010) · Zbl 1225.60141
[5] Carpinteri, A.; Mainardi, F., Fractals and fractional calculus in continuum mechanics, (1997), Springer Wien · Zbl 0917.73004
[6] Zhu, C.X.; Zou, Y., Summary of research on fractional-order control, Control and decision, 24, 2, 161-169, (2009) · Zbl 1199.93002
[7] Podlubny, I., Fractional differential equations, mathematics in science and engineering, (1999), Academic Press New York
[8] Monje, C.M.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V., Fractional-order systems and controls—fundamentals and applications, advanced industrial control series, (2010), Springer-Verlag London
[9] Sheng, H.; Li, Y.; Chen, Y.Q., Application of numerical inverse Laplace transform algorithms in fractional calculus, Journal of the franklin institute, 348, 2, 315-330, (2011) · Zbl 1210.65201
[10] Çenesiz, Y.; Keskin, Y.; Kurnaz, A., The solution of the bagley – torvik equation with the generalized Taylor collocation method, Journal of the franklin institute, 347, 2, 452-466, (2010) · Zbl 1188.65107
[11] Podlubny, I., Fractional-order systems and PIλDμ-controllers, IEEE transactions on automatic control, 44, 1, 208-214, (1999) · Zbl 1056.93542
[12] Podlubny, I.; Petráš, I.; Vinagre, B.M.; O’Leary, P.; Dorčák, L’., Analogue realizations of fractional-order controllers, Nonlinear dynamics, 29, 281-296, (2002) · Zbl 1041.93022
[13] D. Matignon, Stability result on fractional differential equations with applications to control processing, in: Proceedings of the IMACS-SMC, Lille, France, 1996, 963-968.
[14] D. Matignon, Stability properties for generalized fractional differential systems, in: Proceedings of the Colloquium FDS’98: Fractional Differential Systems: Models, Methods and Applications, vol. 5, Paris, 1998, pp. 145-158. · Zbl 0920.34010
[15] D. Matignon, Generalized fractional differential and difference equations: stability properties and modeling issues, in: Proceedings of the Mathematical Theory of Networks and Systems symposium (MTNS’98), Padova, Italy, July 1998, 503-506.
[16] A. Oustaloup, P. Melchior, The great principles of the CRONE control, in: Proceedings of the Systems, Man and Cybernetics. Systems Engineering in the Service of Humans, 1993, 118-129.
[17] A. Oustaloup, M. Bansard, First generation CRONE control, in: Proceedings of the Systems, Man and Cybernetics. Systems Engineering in the Service of Humans, 1993, 130-135.
[18] A. Oustaloup, B. Mathieu, P. Lanusse, Second generation CRONE control, in: Proceedings of the Systems, Man and Cybernetics. Systems Engineering in the Service of Humans, 1993, 136-142.
[19] A. Oustaloup, B. Bluteau, M. Nouillant, First generation scalar CRONE control: application to a two DOF manipulator and comparison with non linear decoupling control, in: Proceedings of the Systems, Man and Cybernetics. Systems Engineering in the Service of Humans, 1993, 453-458.
[20] Vinagre, B.M.; Chen, Y.Q.; Petráš, I., Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the franklin institute, 340, 5, 349-362, (2003) · Zbl 1051.93031
[21] Wang, Z.B.; Cao, G.Y.; Zhu, X.J., Stability conditions and criteria for fractional order linear time-invariant systems, Control theory & applications, 21, 6, 922-926, (2004) · Zbl 1092.34545
[22] Wang, Z.B.; Cao, G.Y.; Zhu, X.J., Research on the internal and external stability of fractional order linear systems, Control and decision, 19, 10, 1171-1174, (2004)
[23] Hu, J.B.; Han, Y.; Zhao, L.D., A novel stability theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach, Acta physica sinica, 58, 4, 2235-2239, (2009) · Zbl 1199.37062
[24] Chen, Y.Q.; Moore, K.L., Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W, Automatica, 38, 5, 891-895, (2002) · Zbl 1020.93019
[25] M. Moze, J. Sabatier, A. Oustaloup, LMI tools for stability analysis of fractional systems, in: Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, USA, 2005, pp. 1611-1619.
[26] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Computers & mathematics with applications, 59, 5, 1594-1609, (2010) · Zbl 1189.34020
[27] Ahn, H.S.; Chen, Y.Q.; Podlubny, I., Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, Applied mathematics and computation, 187, 1, 27-34, (2007) · Zbl 1123.93074
[28] Chen, Y.Q.; Ahn, H.S.; Podlubny, I., Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal processing, 86, 10, 2611-2618, (2006) · Zbl 1172.94385
[29] Ahn, H.S.; Chen, Y.Q., Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, 44, 11, 2985-2988, (2008) · Zbl 1152.93455
[30] Lu, J.G.; Chen, G.R., Robust stability and stabilization of fractional-order interval systems: an LMI approach, IEEE transactions on automatic control, 54, 6, 1294-1299, (2009) · Zbl 1367.93472
[31] Lu, J.G.; Chen, Y.Q., Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case, IEEE transactions on automatic control, 55, 1, 152-158, (2010) · Zbl 1368.93506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.