×

zbMATH — the first resource for mathematics

Output feedback control using small-gain conditions for stochastic nonlinear systems with SiISS inverse dynamics. (English) Zbl 1222.93230
Summary: This article further discusses output feedback control for stochastic nonlinear systems with stochastic integral input-to-state stability (SiISS) inverse dynamics. Based on the stochastic LaSalle theorem and small-gain type conditions on SiISS, an output feedback controller using the backstepping method is constructively designed to guarantee that all the closed-loop signals are bounded almost surely and the stochastic closed-loop system is globally asymptotically stable in probability.

MSC:
93E15 Stochastic stability in control theory
93B52 Feedback control
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/9.940927 · Zbl 1008.93068
[2] DOI: 10.1109/TAC.2006.882930 · Zbl 1366.93604
[3] DOI: 10.1109/TAC.2009.2028980 · Zbl 1367.93598
[4] DOI: 10.1109/TAC.2009.2037457 · Zbl 1368.93640
[5] DOI: 10.1007/BF01211469 · Zbl 0836.93054
[6] DOI: 10.1016/0005-1098(96)00051-9 · Zbl 0857.93089
[7] DOI: 10.1016/j.automatica.2008.08.006 · Zbl 1158.93411
[8] DOI: 10.1016/j.automatica.2010.01.033 · Zbl 1193.93146
[9] Lin ZW, International Journal of Innovative Computing, Information and Control 4 pp 2295– (2008)
[10] DOI: 10.1016/j.automatica.2006.08.028 · Zbl 1115.93076
[11] DOI: 10.1007/s10255-007-7005-x · Zbl 1142.93034
[12] DOI: 10.1002/rnc.1255 · Zbl 1284.93241
[13] DOI: 10.1016/j.automatica.2007.11.011 · Zbl 1283.93230
[14] DOI: 10.1360/03yf0079 · Zbl 1186.93065
[15] DOI: 10.1137/S0363012903439185 · Zbl 1117.93067
[16] Liu L., Nonlinear Analysis: Modelling and Control 15 pp 39– (2010)
[17] DOI: 10.3724/SP.J.1004.2010.00858 · Zbl 1240.93351
[18] DOI: 10.1006/jmaa.2001.7803 · Zbl 0996.60064
[19] DOI: 10.1137/S0363012996307059 · Zbl 0924.93046
[20] Pan ZG, Science in China (Series F ) 44 pp 292– (2001)
[21] DOI: 10.1016/j.jmaa.2005.05.026 · Zbl 1090.60059
[22] DOI: 10.1109/9.28018 · Zbl 0682.93045
[23] DOI: 10.1016/S0167-6911(98)00003-6 · Zbl 0902.93062
[24] DOI: 10.1002/rnc.724 · Zbl 1049.93086
[25] Tang, C and Basar, T. 2001. Stochastic Stability of Singularly Perturbed Nonlinear Systems. Proceedings of the 40th IEEE Conference on Decision and Control. 2001. pp.399–404. Orlando, Florida, USA
[26] DOI: 10.1109/9.536496 · Zbl 0863.93073
[27] DOI: 10.1080/002071798221632 · Zbl 0953.93073
[28] DOI: 10.1016/S0167-6911(98)00095-4 · Zbl 0913.93067
[29] DOI: 10.1080/00207170600893004 · Zbl 1124.93057
[30] DOI: 10.1016/j.automatica.2006.10.020 · Zbl 1114.93104
[31] DOI: 10.1002/rnc.1177 · Zbl 1127.93354
[32] DOI: 10.1080/00207170701418917 · Zbl 1194.93213
[33] DOI: 10.1080/00207170802699050 · Zbl 1190.93087
[34] DOI: 10.1016/j.automatica.2008.10.006 · Zbl 1154.93427
[35] DOI: 10.1109/TAC.2010.2043004 · Zbl 1368.93229
[36] DOI: 10.1109/TAC.2005.847084 · Zbl 1365.93457
[37] Yao KC, International Journal of Innovative Computing, Information and Control 5 pp 4407– (2009)
[38] DOI: 10.3144/expresspolymlett.2007.1
[39] DOI: 10.1109/TAC.2009.2034924 · Zbl 1368.93584
[40] Yu, X. Xie, X.J., and Duan, N. (2010), ’Small-gain Control Method for Stochastic Nonlinear Systems with Stochastic iISS Inverse Dynamics’,Automatica, 46, 1790–1798 · Zbl 1218.93089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.