×

A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method. (English) Zbl 1223.76119

Summary: In this Letter, we considered a numerical treatment for the solution of the hydromagnetic peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube using Adomian decomposition method and a modified form of this method. The axial velocity is obtained in a closed form. Comparison is made between the results obtained by only three terms of Adomian series with those obtained previously by perturbation technique. It is observed that only few terms of the series expansion are required to obtain the numerical solution with good accuracy.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
92C35 Physiological flow
76Z05 Physiological flows
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Latham, T.W., Fluid motion in a peristaltic pump, M.sc. thesis, (1966), Massachusetts Institute of Technology Cambridge
[2] Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L., J. fluid mech., 12, 799, (1969)
[3] Sud, V.K.; Sephon, G.S.; Mishra, R.K., Bull. math. biol., 39, 385, (1977)
[4] Fung, Y.C.; Yih, C.S., J. appl. mech., 35, 669, (1968)
[5] Yin, C.C.; Fung, Y.C., J. appl. mech., 35, 579, (1969)
[6] Shukla, J.B.; Gupta, S.P., J. biomech. eng., 104, 182, (1982)
[7] Srivastava, L.M.; Srivastava, V.P., J. biomech., 17, 821, (1984)
[8] Eytan, O.; Elad, D., Bull. math. biology, 61, 221, (1999)
[9] De Vries, K.; Lyons, E.A.; Ballard, J.; Levi, C.S.; Lindsay, D.J., Am. J. obstetrics gynecol., 162, 679, (1990)
[10] El Hakeem, A.; El Naby, A.; El Misiery, A.M.M.; El Shamy, I.I., J. phys. A: math. gen., 63, 8535, (2003) · Zbl 1032.92011
[11] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Boston · Zbl 0802.65122
[12] Adomian, G., J. math. anal. appl., 119, 340, (1986)
[13] Haldar, K., Appl. math. lett., 9, 109, (1996)
[14] Wazwaz, A.M., Appl. math. comput., 102, 77, (1999)
[15] Abbasbandy, S.; Darvishi, M.T., Appl. math. comput., 163, 1265, (2005)
[16] Helal, M.A.; Mehanna, M.S., Chaos solitons fractals, 28, 320, (2006)
[17] Wazwaz, A.M., Appl. math. comput., 118, 123, (2001)
[18] Cherruault, Y., Kybernetes, 9, 31, (1988)
[19] Cherruault, Y.; Adomian, G., Math. comput. model., 18, 103, (1993)
[20] Cherruault, Y.; Adomian, G.; Abbaoui, K.; Rach, R., Int. J. basic. comput., 38, 89, (1995)
[21] Cherruault, Y.; Saccamondi, G.; Some, B., Math. comput. model., 16, 85, (1992)
[22] Shukla, J.B.; Parihar, R.S.; Rao, B.R.P.; Gupta, S.P., J. fluid. mech., 97, 225, (1980) · Zbl 0434.76098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.