×

zbMATH — the first resource for mathematics

The ground state of the three-dimensional random-field Ising model. (English) Zbl 1223.82016
Summary: We prove that the three-dimensional Ising model in a random magnetic field exhibits long-range order at zero temperature and small disorder. Hence the lower critical dimension for this model is two (or less) and not three as has been suggested by some.

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82D30 Statistical mechanical studies of random media, disordered materials (including liquid crystals and spin glasses)
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Berretti, A.: Some properties of random Ising models. J. Stat. Phys. (to appear) · Zbl 0624.60116
[2] Imry, Y., Ma, S.: Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett.35, 1399?1401 (1975) · doi:10.1103/PhysRevLett.35.1399
[3] Imry, Y.: Random external fields. J. Stat. Phys.34, 849?862 (1984) · doi:10.1007/BF01009444
[4] Birgenau, R., Cowley, R., Shirane, G., Yoshizawa, H.: Phase transitions in diluted magnets: critical behavior, percolation, and random fields. J. Stat. Phys.34, 817?847 (1984) · doi:10.1007/BF01009443
[5] Grinstein, G.: On the lower critical dimension of the random field Ising model. J. Appl. Phys.55, 2371?2376 (1984) · doi:10.1063/1.333669
[6] Parisi, G., Sourias, N.: Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett.43, 744?745 (1979) · doi:10.1103/PhysRevLett.43.744
[7] Parisi, G., Sourlas, N.: Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B206, 321?332 (1982) · Zbl 0968.81547 · doi:10.1016/0550-3213(82)90538-7
[8] Cardy, J.: Nonperturbative effects in a scalar supersymmetric theory. Phys. Lett.125B, 470?472 (1983)
[9] Klein, A., Perez, J.: Supersymmetry and dimensional reduction: a non-perturbative proof. Phys. Lett.125B, 473?475 (1983)
[10] Klein, A., Landau, L., Perez, J.: Supersymmetry and the Parisi-Sourlas dimensional reduction: a rigorous proof. Commun. Math. Phys.94, 459?482 (1984) · Zbl 0546.60066 · doi:10.1007/BF01403882
[11] Pytte, E., Imry, Y., Mukamel, D.: Lower critical dimension and the roughening transition of the random-field Ising model. Phys. Rev. Lett.46, 1173?1177 (1981) · doi:10.1103/PhysRevLett.46.1173
[12] Mukhamel, D., Pytte, E.: Interface fluctuations and the Ising model in a random field. Phys. Rev. B25, 4779?4786 (1982)
[13] Grinstein, G., Ma, S.: Roughening and lower critical dimension in the random-field Ising model. Phys. Rev. Lett.49, 685?688 (1982) · doi:10.1103/PhysRevLett.49.685
[14] Grinstein, G., Ma, S.: Surface tension, roughening, and lower critical dimension in the random-field Ising model. Phys. Rev. B28, 2588?2601 (1983)
[15] Villain, J.: Commensurate-incommensurate transition with frozen impurities. J. Phys.43, L551-L558 (1982)
[16] Fisher, D., Fröhlich, J., Spencer, T.: The Ising model in a random magnetic field. J. Stat. Phys.34, 863?870 (1984) · doi:10.1007/BF01009445
[17] Fröhlich, J., Imbrie, J.: Improved perturbation expansion in disordered systems: Beating Griffiths singularities. Commun. Math. Phys.96, 145?180 (1984) · Zbl 0574.60098 · doi:10.1007/BF01240218
[18] Chalker, J.: On the lower critical dimensionality of the Ising model in a random field. J. Phys. C16, 6615?6622 (1983)
[19] van Enter, A., van Hemmen, J.: The thermodynamic limit for long-range random systems. J. Stat. Phys.32, 141?152 (1983) · doi:10.1007/BF01009426
[20] Krey, U.: On the lower critical dimension of spin systems in random fields. J. Phys. C (to appear)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.