On the order of summability of the Fourier inversion formula. (English) Zbl 1224.42014

Summary: We show that the order of the point value, in the sense of Łojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and a certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that, if the distribution has a distributional point value of order \(k\), then its Fourier series is e.v. Cesàro summable to the distributional point value of order \(k+1\). Conversely, we also show that, if the pointwise Fourier inversion formula is e.v. Cesàro summable of order \(k\), then the distribution is the \((k+1)\)-th derivative of a locally integrable function, and the distribution has a distributional point value of order \(k+2\). We also establish connections between orders of summability and local behavior for other Fourier inversion problems.


42A24 Summability and absolute summability of Fourier and trigonometric series
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46F10 Operations with distributions and generalized functions
46F12 Integral transforms in distribution spaces
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
Full Text: DOI Link


[1] Bremermann, H., Distributions, Complex Variables and Fourier Transforms, Addison-Wesley, Reading, Massachusetts, 1965. · Zbl 0151.18102
[2] Denjoy, A., Sur l’intégration des coefficients différentiels d’ordre supérieur, Fund. Math., 25(1935), 237–320.
[3] Bochner, S. and Chadrasekharan, K., Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N.J., 1949. · Zbl 0065.34101
[4] Bochner, S., Lectures on Fourier Integrals, Annals of Mathematics Studies, No. 42, Princeton University Press, Princeton, N.J., 1959. · Zbl 0085.31802
[5] Campos Ferreira, J., Introduction to the theory of distributions, Longman, Harlow, 1997. · Zbl 0905.46001
[6] Estrada, R., Characterization of the Fourier Series of a Distribution Having a Value at a point, Proc. Amer. Math. Soc., 124(1996), 1205–1212. · Zbl 0843.46024
[7] Estrada, R., The Cesàro Behaviour of Distributions, Proc. Roy. Soc. London Ser. A, 454(1998), 2425–2443. · Zbl 0916.46004
[8] Estrada, R., A Distributional Version of the Ferenc-Lukács Theorem, Sarajevo J. Math., 1(2005), 1–17.
[9] Estrada, R. and Kanwal, R. P., A Distributional Approach to Asymptotics. Theory and Applications, second edition, Birkhäuser, Boston, 2002. · Zbl 1033.46031
[10] Estrada, R. and Vindas, J., Determination of Jumps of Distributions by Differentiated Means, Acta Math. Hungar., 124(2009), 215–241. · Zbl 1224.40011
[11] Fejér, L., Über die Bestimmung des Sprunges der Funktion aus Ihrer Fourierreihe, J. Reine Angew. Math., 142(1913), 165–188. · JFM 44.0483.01
[12] González Vieli, F. J., Pointwise Fourier Inversion of Distributions, Anal. Theory Appl., 24(2008), 87–92. · Zbl 1164.42011
[13] Gordon, R. A., The integrals of Lebesgue, Denjoy, Perron and Henstock, A.M.S., Providence, 1994. · Zbl 0807.26004
[14] Gronwall, T. H., Über eine Summationsmethode und ihre Anwendung auf die Fouriersche Reihe, J. Reine Angew. Math., 147(1916), 16–35.
[15] Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
[16] Hardy, G. H. and Littlewood, J. E., Solution of the Cesàro summability problem for power series and Fourier series, Math. Z., 19(1923), 67–96. · JFM 49.0232.01
[17] Hardy, G. H. and Littlewood, J. E., The Fourier Series of a Positive Function, J. London Math. Soc., 1(1926), 134–138. · JFM 52.0271.03
[18] Hardy, G. H., and Riesz, M., The General Theory of Dirichlet’s Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Cambridge University Press, Cambridge, 1952.
[19] Hardy, G. H. and Rogosinski, W. W., Fourier Series, Second Edition, Cambridge Tracts in Mathematics and Mathematical Physics, no. 38, Cambridge, At the University Press, 1950.
[20] Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier’s Series, Vol. II, Dover Publications, New York, 1958. · Zbl 0081.27702
[21] Łojasiewicz, S., Sur la Valuer et la Limite D’une Distribution en un Point, Studia Math., 16(1957), 1–36. · Zbl 0086.09405
[22] Lukács, F., Über die Bestimmung des Sprunges Einer Funktion aus Ihrer Fourierreihe, J. Reine Angew. Math., 150(1920), 107–112.
[23] Marcinkiewicz, J., Sur les séries de Fourier, Fundamenta Mathematicae, 27(1936), 38–69. · JFM 62.0288.01
[24] Móricz, F., Determination of Jumps in Terms of Abel-Poisson Means, Acta. Math. Hungar., 98(2003), 259–262. · Zbl 1026.42004
[25] Móricz, F., Ferenc Lukács type Theorems in Terms of the Abel-Poisson Means of Conjugate Series, Proc. Amer. Math. Soc., 131(2003), 1243–1250. · Zbl 1031.42002
[26] Pilipović, S., Stanković, B. and Takači, A., Asymptotic Behaviour and Stieltjes Transformation of Distributions, Teubner-Texte zur Mathematik, Leipzig, 1990. · Zbl 0756.46020
[27] Plancherel, M., Sur la Convergence et sur la Sommation par les Moyennes de Cesàro de lim za z f(x) cos xydx, Math. Annalen, 76(1915), 315–326. · JFM 45.0459.01
[28] Riesz, M., Une méthode de Sommation équivalente à la méthode des Moyennes Arithmétiques, C. R. Acad. Sci. Paris, (1911), 1651–1654. · JFM 42.0272.02
[29] Schwartz, L., Théorie des Distributions, Hermann, Paris, 1966.
[30] Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics, 598, Springer Verlag, Berlin, 1976. · Zbl 0324.26002
[31] Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Second Edition, Clarendon Press, Oxford, 1948. · Zbl 0031.03202
[32] de la Vallée Poussin, Ch. J., Sur L’approximation des Fonctions D’une Variable réelle et Leurs dérivées par les polynômes et les Suites limitées de Fourier, Bull. de l’Acd. Royale de Belgique, (1908), 193–254.
[33] Vindas, J., Structural Theorems for Quasiasymptotics of Distributions at Infinity, Pub. Inst. Math. (Beograd) (N.S.), 84(2008), 159–174. · Zbl 1199.46094
[34] Vindas, J., The Structure of Quasiasymptotics of Schwartz Distributions, Linear and non-linear Theory of Generalized Functions and its Applications, Banach Center Publ. 88, Polish Acad. Sc. Inst. Math., Warsaw, 2010. · Zbl 1202.46049
[35] Vindas, J. and Estrada, R., Distributionally Regulated Functions, Studia. Math., 181(2007), 211–236. · Zbl 1129.46034
[36] Vindas, J. and Estrada, R., Distributional Point Values and Convergence of Fourier Series and Integrals, J. Fourier Anal. Appl., 13(2007), 551–576. · Zbl 1138.46030
[37] Vindas, J. and Estrada, R., On the Jump Behavior and Logarithmic Averages, J. Math. Anal. Appl., 347(2008), 597–606. · Zbl 1163.46027
[38] Vindas, J. and Estrada, R., On the Support of Tempered Distributions, Proc. Edinb. Math. Soc., 53:1(2010), 255–270. · Zbl 1183.42011
[39] Vindas, J. and Pilipović, S., Structural Theorems for Quasiasymptotics of Distributions at the Origin, Math. Nachr., 282(2009), 1584–1599. · Zbl 1189.46032
[40] Vladimirov, V. S., Drozhzhinov, Yu. N. and Zavialov, B. I., Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Dordrecht, 1988. · Zbl 0636.40003
[41] Vladimirov, V. S., Methods of the Theory of Generalized Functions, Taylor & Francis, London, 2002. · Zbl 1078.46029
[42] Walter, G., Pointwise Convergence of Distribution Expansions, Studia Math., 26(1966), 143–154. · Zbl 0144.37401
[43] Walter, G., Fourier Series and Analytic Representation of Distributions, SIAM Review, 12(1970), 272–276. · Zbl 0205.12903
[44] Walter, G. and Shen, X.,Wavelets and other Orthogonal Systems, Second Edition, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, 2001. · Zbl 1005.42018
[45] Zygmund, A., Sur un théorème de M. Gronwall, Bull. Acad. Polon., (1925), 207–217.
[46] Zygmund, A., Trigonometric Series, Vols. I & II, Second Edition, Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.