×

zbMATH — the first resource for mathematics

Variational iteration method for solving the multi – pantograph delay equation. (English) Zbl 1225.34024
Summary: In this Letter, the variational iteration method is applied to solve the multi-pantograph delay equation. Sufficient conditions are given to assure the convergence of the method. Examples show that the method is effective.

MSC:
34A45 Theoretical approximation of solutions to ordinary differential equations
65K10 Numerical optimization and variational techniques
65L05 Numerical methods for initial value problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Comput. methods appl. mech. eng., 167, 57, (1998)
[2] He, J.H., Int. J. nonlinear mech., 34, 4, 699, (1999)
[3] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[4] He, J.H., J. comput. appl. math., 207, 1, 3, (2007)
[5] He, J.H.; Wu, X.H., Comput. math. appl., 54, 881, (2007)
[6] He, J.H., Appl. math. comput., 118, 2-3, 115, (2000)
[7] He, J.H.; Wu, X.H., Chaos solitons fractals, 29, 108, (2006)
[8] Wazwaz, A.M., Chaos solitons fractals, 37, 1136, (2008)
[9] Mokhtari, R., Int. J. nonlinear sci. numer., 9, 19, (2008)
[10] Ozer, H., Int. J. nonlinear sci. numer., 9, 25, (2008)
[11] Ozer, H., Int. J. nonlinear sci. numer., 8, 513, (2007)
[12] Yusufoglu, E., Int. J. nonlinear sci. numer., 8, 153, (2007)
[13] Odibat, Z.M.; Momani, S., Int. J. nonlinear sci. numer., 7, 1, 27, (2006)
[14] Wang, S.Q.; He, J.H., Phys. lett. A, 367, 188, (2007)
[15] Sezer, M.; Yalcinbas, S.; Sahin, N., J. comput. appl. math., 214, 406, (2008)
[16] Keskin, Y., Int. J. nonlinear sci. numer., 8, 159, (2007)
[17] Liu, M.Z.; Li, D.S., Appl. math. comput., 155, 853, (2004)
[18] Liu, M.Z.; Yang, Z.W.; Xu, Y., Math. comput., 75, 1201, (2006)
[19] Li, D.; Liu, M.Z., Appl. math. comput., 163, 383, (2005)
[20] Muroya, Y.; Ishiwata, E.; Brunner, H., J. comput. appl. math., 152, 347, (2003)
[21] Evens, D.J.; Raslan, K.R., Int. J. comput. math., 82, 1, 49, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.