×

On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction. (English) Zbl 1225.74085

Summary: The numerical solution of fluid – structure-interaction problems poses a paradox in that most of the computational resources are consumed by the subsystem of least practical interest, viz., the fluid. Goal-oriented adaptive discretization methods provide a paradigm to bypass this paradox. Based on the solution of a dual problem, the contribution of local residuals to the error in a specific goal functional is estimated, and only the regions that yield a dominant contribution are refined. In the present work, we address a fundamental complication in the application of goal-oriented adaptivity to fluid – structure-interaction problems, namely, that the treatment of the interface conditions has nontrivial consequences for the properties of the dual problem. In the context of a linearized model problem, we consider two equivalent discretizations differing only on the formulation of the interface coupling terms. By means of an adjoint consistency analysis, we show that only one of these discretizations is adjoint consistent. Numerical experiments convey that the two discretizations behave very differently for the dual problem, and that the adjoint-consistent discretization yields more reliable error estimates. Based on the adjoint-consistent discretization, we finally present some \(h\)- and \(h\)p-adaptive results, confirming that tremendous savings in computational cost can be realized through the use of goal-oriented refinement strategies. The numerical experiments illustrate that the goal-oriented approach effectively equilibrates the error contributions of the fluid and structure subsystems, which is imperative for efficiently resolving the coupled fluid – structure-interaction problem, and which cannot be accomplished by uniform or residual-based refinement strategies.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[2] Bauman, P. T.; Oden, J. T.; Prudhomme, S., Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms, Comput. Methods Appl. Mech. Engrg., 198, 5-8, 799-818 (2009) · Zbl 1229.74006
[3] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math, 4, 237-264 (1996) · Zbl 0868.65076
[4] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10, 1-102 (2001) · Zbl 1105.65349
[5] Carey, V.; Estep, D.; Tavener, S., A posteriori analysis and adaptive error control for multiscale operator decomposition solution of elliptic systems I: triangular systems, SIAM J. Numer. Anal., 47, 1, 740-761 (2009) · Zbl 1186.65142
[6] Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O., Toward a universal \(h-p\) adaptive finite element strategy, Part 1. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 1-2, 79-112 (1989) · Zbl 0723.73074
[7] Dunne, T., An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation, Int. J. Numer. Meth. Fluids, 51, 9-10, 1017-1039 (2006) · Zbl 1158.76400
[8] Eibner, T.; Melenk, J. M., An adaptive strategy for hp-FEM based on testing for analyticity, Comput. Mech., 39, 5, 575-595 (2007) · Zbl 1163.65331
[10] Estep, D.; Tavener, S.; Wildey, T., A posteriori analysis and improved accuracy for an operator decomposition solution of a conjugate heat transfer problem, SIAM J. Numer. Anal., 46, 4, 2068-2089 (2008) · Zbl 1176.65124
[11] Farhat, C.; Geuzaine, P.; Brown, G., Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter, Comput. Fluids, 32, 1, 3-29 (2003) · Zbl 1009.76518
[12] Feng, X.; Wu, H., A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow, J. Comput. Math., 26, 6, 767-796 (2008) · Zbl 1174.65035
[13] Gatica, G. N.; Hsiao, G. C.; Meddahi, S., A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem, Numer. Math., 114, 1, 63-106 (2009) · Zbl 1247.76051
[14] Giles, M. B., Non-reflecting boundary conditions for Euler equation calculations, AIAA J., 28, 12, 2050-2058 (1990)
[15] Giles, M. B.; Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 11, 145-236 (2002) · Zbl 1105.65350
[16] Gopalakrishnan, P.; Tafti, D. K., A parallel boundary fitted dynamic mesh solver for applications to flapping flight, Comput. Fluids, 38, 8, 1592-1607 (2009) · Zbl 1242.76164
[17] Grätsch, T.; Bathe, K.-J., Goal-oriented error estimation in the analysis of fluid flows with structural interactions, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5673-5684 (2006) · Zbl 1122.76055
[19] Hartmann, R., Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. Numer. Anal., 45, 6, 2671-2696 (2007) · Zbl 1189.76341
[20] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws, SIAM J. Sci. Comput., 24, 3, 979-1004 (2002) · Zbl 1034.65081
[21] Hartmann, R.; Houston, P., Symmetric interior penalty DG methods for the compressible Navier-Stokes equations II: Goal-oriented a posteriori error estimation, Int. J. Numer. Anal. Model., 3, 2, 141-162 (2006) · Zbl 1152.76429
[22] Houston, P.; Rannacher, R.; Süli, E., A posteriori error analysis for stabilized finite element approximations of transport problems, Comput. Methods Appl. Mech. Engrg., 190, 11-12, 1483-1508 (2000) · Zbl 0970.65115
[23] Houston, P.; Senior, B.; Süli, E., Sobolev regularity estimation for hp-adaptive finite element methods, (Brezzi, F.; Buffa, A.; Corsaro, S.; Murli, A., Numerical Mathematics and Advanced Applications (2003), Springer-Verlag), 619-644 · Zbl 1043.65114
[24] Houston, P.; Süli, E., hp-Adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems, SIAM J. Sci. Comput., 23, 4, 1226-1252 (2001) · Zbl 1029.65130
[25] Houston, P.; Süli, E., A note on the design of hp-adaptive finite element methods for elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 2-5, 229-243 (2005) · Zbl 1074.65131
[26] Kreiss, H.-O., Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., 23, 277-298 (1970) · Zbl 0188.41102
[27] Larson, M. G.; Bengzon, F., Adaptive finite element approximation of multiphysics problems, Commun. Numer. Methods Engrg., 24, 6, 505-521 (2008) · Zbl 1141.78328
[28] Larson, M. G.; Målqvist, A., Goal oriented adaptivity for coupled flow and transport problems with applications in oil reservoir simulations, Comput. Methods Appl. Mech. Engrg., 196, 37-40, 3546-3561 (2007) · Zbl 1173.76346
[29] Larson, M. G.; Målqvist, A., An adaptive variational multiscale method for convection-diffusion problems, Commun. Numer. Methods Engrg., 25, 1, 65-79 (2009) · Zbl 1156.76047
[30] Larson, M. G.; Söderlund, R.; Bengzon, F., Adaptive finite element approximation of coupled flow and transport problems with applications in heat transfer, Int. J. Numer. Methods Fluids, 57, 9, 1397-1420 (2008) · Zbl 1140.76021
[31] Melbø, H.; Kvamsdal, T., Goal-oriented error estimators for Stokes equations based on variationally consistent postprocessing, Comput. Methods Appl. Mech. Engrg., 192, 5-6, 613-633 (2003) · Zbl 1024.76024
[32] Oliver, T. A.; Darmofal, D. L., Analysis of dual consistency for discontinuous Galerkin discretizations of source terms, SIAM J. Numer. Anal., 47, 5, 3507-3525 (2009) · Zbl 1203.65258
[33] Piperno, S.; Farhat, C., Partitioned procedures for the transient solution of coupled aeroelastic problems - Part II: Energy transfer analysis and three-dimensional applications, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3147-3170 (2001) · Zbl 1015.74009
[34] Prudhomme, S.; Chamoin, L.; Ben Dhia, H.; Bauman, P. T., An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1887-1901 (2009) · Zbl 1227.74089
[35] Prudhomme, S.; Oden, J. T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Engrg., 176, 1-4, 313-331 (1999) · Zbl 0945.65123
[36] Prudhomme, S.; Oden, J. T., Computable error estimators and adaptive techniques for fluid flow problems, (Barth, T. J.; Deconinck, H., Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Lecture Notes in Computational Science and Engineering, vol. 25 (2003), Springer-Verlag: Springer-Verlag Heidelber), 207-268 · Zbl 1141.76427
[37] Stein, K.; Benney, R.; Tezduyar, T.; Potvin, J., Fluid-structure interactions of a cross parachute: numerical simulation, Comput. Methods Appl. Mech. Engrg., 191, 6-7, 673-687 (2001) · Zbl 0999.76085
[38] Süli, E.; Houston, P., Adaptive finite element approximation of hyperbolic problems, (Barth, T. J.; Deconinck, H., Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Lecture Notes in Computational Science and Engineering, vol. 25 (2003), Springer-Verlag: Springer-Verlag Heidelberg), 269-344 · Zbl 1141.76428
[39] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation, Comput. Methods Appl. Mech. Engrg., 195, 13-16, 1885-1895 (2006) · Zbl 1178.76241
[40] van Brummelen, E. H.; Hulshoff, S. J.; de Borst, R., Energy conservation under incompatibility for fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 192, 25, 2727-2748 (2003) · Zbl 1054.74567
[43] van der Zee, K. G.; van Brummelen, E. H.; de Borst, R., Goal-oriented error estimation for Stokes flow interacting with a flexible channel, Int. J. Numer. Meth. Fluids, 56, 8, 1551-1557 (2008) · Zbl 1136.76032
[44] van der Zee, K. G.; van Brummelen, E. H.; de Borst, R., Goal-oriented error estimation and adaptivity for free-boundary problems: the domain-map linearization approach, SIAM J. Sci. Comput., 32, 2, 1064-1092 (2010) · Zbl 1210.35300
[45] van der Zee, K. G.; van Brummelen, E. H.; de Borst, R., Goal-oriented error estimation and adaptivity for free-boundary problems: the shape-linearization approach, SIAM J. Sci. Comput., 32, 2, 1093-1118 (2010) · Zbl 1209.35159
[46] Vorp, D. A.; Steinman, D. A.; Ethier, C. R., Computational modeling of arterial biomechanics, Comput. Sci. Engrg., 3, 5, 51-64 (2001)
[47] Šolín, P.; Segeth, K., Hierarchic higher-order Hermite elements on hybrid triangular/quadrilateral meshes, Math. Comput. Simulat., 76, 1-3, 198-204 (2007) · Zbl 1135.65393
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.