zbMATH — the first resource for mathematics

A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. (English) Zbl 1225.76211
Summary: A Cartesian cut-cell method which allows the solution of two- and three-dimensional viscous, compressible flow problems on arbitrarily refined graded meshes is presented. The finite-volume method uses cut cells at the boundaries rendering the method strictly conservative in terms of mass, momentum, and energy. For three-dimensional compressible flows, such a method has not been presented in the literature, yet. Since ghost cells can be arbitrarily positioned in space the proposed method is flexible in terms of shape and size of embedded boundaries. A key issue for Cartesian grid methods is the discretization at mesh interfaces and boundaries and the specification of boundary conditions. A linear least-squares method is used to reconstruct the cell center gradients in irregular regions of the mesh, which are used to formulate the surface flux. Expressions to impose boundary conditions and to compute the viscous terms on the boundary are derived. The overall discretization is shown to be second-order accurate in \(L^{1}\). The accuracy of the method and the quality of the solutions are demonstrated in several two- and three-dimensional test cases of steady and unsteady flows.

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
PDF BibTeX Cite
Full Text: DOI
[1] Peskin, C., Flow patterns around heart valves: a numerical method, J. comput. phys., 10, 252-271, (1972) · Zbl 0244.92002
[2] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. comput. phys., 156, 209-240, (1999) · Zbl 0957.76043
[3] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. comput. phys., 227, 4825-4852, (2008) · Zbl 1388.76263
[4] Löhner, R.; Cebral, J.; Camelli, F.; Appanaboyina, S.; Baum, J.; Mestreau, E.; Soto, O., Adaptive embedded and immersed unstructured grid techniques, Comput. methods appl. mech. engrg., 197, 2173-2197, (2008) · Zbl 1158.76408
[5] Barad, M.; Colella, P.; Schladow, S., An adaptive cut-cell method for environmental fluid mechanics, Int. J. numer. method fluids, 60, 473-514, (2009) · Zbl 1319.76015
[6] Mittal, R.; Iaccarino, G., Immersed boundary methods, Ann. rev. fluid mech., 37, 239-261, (2005) · Zbl 1117.76049
[7] Lai, M.; Peskin, C., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. comput. phys., 160, 705-719, (2000) · Zbl 0954.76066
[8] Peskin, C., The immersed boundary method, Acta numerica, 1-39, (2002)
[9] Griffith, B.; Peskin, C., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. comput. phys., 208, 75-105, (2005) · Zbl 1115.76386
[10] Griffith, B.; Hornung, R.; McQueen, D.; Peskin, C., An adaptive, formally second order accurate version of the immersed boundary method, J. comput. phys., 223, 10-49, (2007) · Zbl 1163.76041
[11] Choi, J.; Oberoi, R.; Edwards, J.; Rosati, J., An immersed boundary method for complex incompressible flows, J. comput. phys., 224, 757-784, (2007) · Zbl 1123.76351
[12] Taira, K.; Colonius, T., The immersed boundary method: a projection approach, J. comput. phys., 225, 2118-2137, (2007) · Zbl 1343.76027
[13] Colonius, T.; Taira, K., A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions, Comput. methods appl. mech. engrg., 197, 2131-2146, (2008) · Zbl 1158.76395
[14] Boffi, D.; Gastaldi, L.; Heltai, L.; Peskin, C., On the hyper-elastic formulation of the immersed boundary method, Comput. methods appl. mech. engrg., 197, 2210-2231, (2008) · Zbl 1158.74523
[15] Mori, Y.; Peskin, C., Implicit second-order immersed boundary methods with boundary mass, Comput. methods appl. mech. engrg., 197, 2049-2067, (2008) · Zbl 1158.74533
[16] Le, D.; Khoo, B.; Lim, K., An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. methods appl. mech. engrg., 197, 2119-2130, (2008) · Zbl 1158.76407
[17] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. comput. phys., 105, 354-366, (1993) · Zbl 0768.76049
[18] Ghias, R.; Mittal, R.; Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J. comput. phys., 225, 528-553, (2007) · Zbl 1343.76043
[19] Udaykumar, H.; Mittal, R.; Shyy, W., Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. comput. phys., 153, 535-574, (1999) · Zbl 0953.76071
[20] Gilmanov, A.; Sotiropoulos, F.; Balaras, E., A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, J. comput. phys., 191, 660-669, (2003) · Zbl 1134.76406
[21] Gilmanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving boundaries, J. comput. phys., 207, 457-492, (2005) · Zbl 1213.76135
[22] Pember, R.; Bell, J.; Colella, P.; Crutchfield, W.; Welcome, M., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. comput. phys., 120, 278-304, (1995) · Zbl 0842.76056
[23] Johansen, H.; Colella, P., A Cartesian grid embedded boundary method for poisson’s equation on irregular domains, J. comput. phys., 147, 60-85, (1998) · Zbl 0923.65079
[24] McCorquodale, P.; Colella, P.; Johansen, H., A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. comput. phys., 173, 620-635, (2001) · Zbl 0991.65099
[25] Schwartz, P.; Barad, M.; Colella, P.; Ligocki, T., A Cartesian grid embedded boundary method for the heat equation and poisson’s equation in three dimensions, J. comput. phys., 211, 531-550, (2006) · Zbl 1086.65532
[26] Hartmann, D.; Meinke, M.; Schröder, W., An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods, Comput. fluids, 37, 1103-1125, (2008) · Zbl 1237.76085
[27] Ji, H.; Lien, F.-S.; Yee, E., A robust and efficient hybrid cut-cell/ghost-cell method with adaptive mesh refinement for moving boundaries on irregular domains, Comput. methods appl. mech. engrg., 198, 432-448, (2008) · Zbl 1228.76108
[28] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. comput. phys., 53, 484-512, (1984) · Zbl 0536.65071
[29] De Zeeuw, D.; Powell, K., An adaptively refined Cartesian mesh solver for the Euler equations, J. comput. phys., 104, 56-68, (1993) · Zbl 0766.76066
[30] de Tullio, M.; De Palma, P.; Iaccarino, G.; Pascazio, G.; Napolitano, M., An immersed boundary method for compressible flows using local grid refinement, J. comput. phys., 225, 2098-2117, (2007) · Zbl 1118.76043
[31] Martin, D.; Colella, P.; Graves, D., A cell-centered adaptive projection method for the incompressible navier – stokes equations in three dimensions, J. comput. phys., 227, 1863-1886, (2008) · Zbl 1137.76040
[32] D. Hartmann, M. Meinke, W. Schröder, A general formulation of boundary conditions on Cartesian cut cells for compressible viscous flow, AIAA Paper 2009-3878, 2009.
[33] Bonet, J.; Peraire, J., An alternating digital tree (ADT) algorithm for geometric searching and intersection, Int. J. numer. method engrg, 31, 1-17, (1991) · Zbl 0825.73958
[34] Yang, G.; Causon, D.; Ingram, D., Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method, Int. J. numer. method fluids, 33, 1121-1151, (2000) · Zbl 0980.76052
[35] Sridar, D.; Balakrishnan, N., An upwind finite difference scheme for meshless solvers, J. comput. phys., 189, 1-29, (2003) · Zbl 1023.76034
[36] Luo, H.; Baum, J.; Löhner, R., A hybrid Cartesian grid and gridless method for compressible flows, J. comput. phys., 214, 618-632, (2006) · Zbl 1136.76409
[37] Liou, M.-S.; Steffen, C.J., A new flux splitting scheme, J. comput. phys., 107, 23-39, (1993) · Zbl 0779.76056
[38] Meinke, M.; Schröder, W.; Krause, E.; Rister, T., A comparison of second- and sixth-order methods for large-eddy simulation, Comput. fluids, 31, 695-718, (2002) · Zbl 1027.76025
[39] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[40] Ollivier-Gooch, C.; Van Altena, M., A high-order-accurate unstructured mesh finite-volume scheme for the advection – diffusion equation, J. comput. phys., 181, 729-752, (2002) · Zbl 1178.76251
[41] Tritton, D., Experiments on the flow past a circular cylinder at low Reynolds numbers, J. fluid mech., 6, 547-567, (1959) · Zbl 0092.19502
[42] Dennis, S.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. fluid mech., 42, 471-489, (1970) · Zbl 0193.26202
[43] Provansal, M.; Mathis, C.; Boyer, L., Bénard-von Kármán instability: transient and forced regimes, J. fluid mech., 182, 1-22, (1987) · Zbl 0641.76046
[44] Williamson, C., Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. fluid mech., 206, 579-627, (1989)
[45] Zhang, H.-Q.; Fey, U.; Noack, B.; König, M.; Eckelmann, H., On the transition of the cylinder wake, Phys. fluids, 7, 4, 779-794, (1995)
[46] Williamson, C., Vortex dynamics in the cylinder wake, Ann. rev. fluid mech., 28, 477-539, (1996)
[47] Johnson, T.; Patel, V., Flow past a sphere up to a Reynolds number of 300, J. fluid mech., 378, 19-70, (1999)
[48] J. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Center for turbulence research report CTR-S88, 1988.
[49] Dubief, Y.; Delcayre, F., On coherent-vortex identification in turbulence, J. turbulence, 1, 1-22, (2000) · Zbl 1082.76554
[50] Tseng, Y.-H.; Ferziger, J., A ghost-cell immersed boundary method for flow in complex geometry, J. comput. phys., 192, 593-623, (2003) · Zbl 1047.76575
[51] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. comput. phys., 171, 132-150, (2001) · Zbl 1057.76039
[52] Marella, S.; Krishnan, S.; Liu, H.; Udaykumar, H., Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations, J. comput. phys., 210, 1-31, (2005) · Zbl 1154.76359
[53] De Palma, P.; de Tullio, M.; Pascazio, G.; Napolitano, M., An immersed-boundary method for compressible viscous flows, Comput. fluids, 35, 693-702, (2006) · Zbl 1177.76306
[54] Kravchenko, A.; Moin, P.; Shariff, K., B-spline method and zonal grids for simulations of complex turbulent flows, J. comput. phys., 151, 757-789, (1999) · Zbl 0942.76058
[55] Balaras, E., Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput. fluids, 33, 375-404, (2004) · Zbl 1088.76018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.