# zbMATH — the first resource for mathematics

Fully fractional anisotropic diffusion for image denoising. (English) Zbl 1225.94003
Summary: This paper introduces a novel Fully Fractional Anisotropic Diffusion Equation for noise removal which contains spatial as well as time fractional derivatives. It is a generalization of a method proposed by Cuesta which interpolates between the heat and the wave equation by the use of time fractional derivatives, and the method proposed by Bai and Feng, which interpolates between the second and the fourth order anisotropic diffusion equation by the use of spatial fractional derivatives. This equation has the benefits of both of these methods. For the construction of a numerical scheme, the proposed partial differential equation (PDE) has been treated as a spatially discretized Fractional Ordinary Differential Equation (FODE) model, and then the Fractional Linear Multistep Method (FLMM) combined with the discrete Fourier transform (DFT) is used. We prove that the analytical solution to the proposed FODE has certain regularity properties which are sufficient to apply a convergent and stable fractional numerical procedure. Experimental results confirm that our model manages to preserve edges, especially highly oscillatory regions, more efficiently than the baseline parabolic diffusion models.

##### MSC:
 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory 34A08 Fractional ordinary differential equations 35R11 Fractional partial differential equations 45K05 Integro-partial differential equations 65D18 Numerical aspects of computer graphics, image analysis, and computational geometry 68U10 Computing methodologies for image processing
Full Text:
##### References:
  Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE trans. pattern. anal. Mach. intell., 12, 629-639, (1990)  Catte, F.; Lions, P.L.; Morel, J.M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. numer. anal., 29, 182-193, (1992) · Zbl 0746.65091  Rudin, L.I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028  Vogel, C.; Oman, M., Iterative methods for total variation denoising, SIAM J. sci. statisc. comput., 17, 227-238, (1996) · Zbl 0847.65083  You, Y.L.; Kaveh, M., Fourth-order partial differential equation for noise removal, IEEE trans. image process., 9, 1723-1730, (2000) · Zbl 0962.94011  Lysaker, M.; Lundervold, A.; Tai, X.C., Noise removal using fourth-order partial differential equation with aplication to medical magnetic resonance images in space and time, IEEE trans. image process, 12, 1579-1590, (2003) · Zbl 1286.94020  Chambole, A.; Lions, P.L., Image recovery via total variation minimization and related problems, Numer. math., 76, 167-188, (1997) · Zbl 0874.68299  P. Blomgren, P. Mulet, T.F. Chan, C.K. Wong, Total variation image restoration: numerical methods and extensions, in: Proc. Int. Conf. Image Process., vol. 3, 1997, pp. 384-387.  Chan, T.F.; Marquina, A.; Mulet, P., High order total variation-based image restoration, SIAM J. sci. comput., 22, 503-516, (2000) · Zbl 0968.68175  Bai, J.; Chu Feng, X., Fractional order anisotropic difusion for image denoising, IEEE trans. image process., 16, 2492-2502, (2007) · Zbl 1119.76377  E. Cuesta, J. Finat, Image Processing by means of linear integro-differential equation, in: Proc. Int. Conf. Vizual. Imaging and Immage Process., 10.10.2003, Benalmadena, Spain.  M. Weilber, Efficient numerical methods for fractional differential equations and their analytical background, Doctorial Dissertation, 09.06.2005.  Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010  Aubert, G.; Kornprobst, P., ()  Didas, S.; Weickert, J.; Burgeth, B., Properties of higher order nonlinear diffusion filtering, J. math imaging vis., 35, 208-226, (2009)  Lubich, C., Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. comp., 45, 172, 463-469, (1985) · Zbl 0584.65090  Henrici, P., Discrete variable methods in ordinary differential equations, () · Zbl 0112.34901  Dieudonné, Foundations of modern analysis, (1960), Academic Press · Zbl 0100.04201  Diethelm, K.; Ford, J.M.; Ford, N.J.; Weilbeer, M., Pitfalls in fast numerical solvers for fractional differential equations, J. comput. appl. math., 186, 482-503, (2006) · Zbl 1078.65550  Mordecai, Avriel, Nonlinear programming: analysis and methods, (2003), Dover Publishing · Zbl 1140.90002  Cao, Y.; Yin, J.; Liu, G.; Li, M., A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear analysis. RWA, 11, 1, 253-261, (2010) · Zbl 1180.35378  Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P., Image quality assessment: from error to structural similarity, IEEE trans. image process., 13, 4, 600-612, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.