New \(_{5}F_{4}\) hypergeometric transformations, three-variable Mahler measures, and formulas for \(1/ \pi \). (English) Zbl 1226.11113

In this paper the author obtains some formulas for three variable Mahler measures in terms of \(_5F_4\) hypergeometric function. Using this he derives some new formulas for \(1/\pi\). For example, if \(a_n=\sum_{k=0}^n {2n-2k \choose n-k} {2k \choose k} {n \choose k}^2\) then \[ \frac{2}{\pi}= \sum_{n=0}^{\infty} (-1)^n \frac{(3n+1)a_n}{32^n} \] and \[ \frac{8\sqrt{3}}{3\pi}= \sum_{n=0}^{\infty} \frac{(5n+1)a_n}{64^n}. \]


11R09 Polynomials (irreducibility, etc.)
33C20 Generalized hypergeometric series, \({}_pF_q\)
33C05 Classical hypergeometric functions, \({}_2F_1\)
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
Full Text: DOI arXiv


[1] Bender, C.M., Brody, D.C., Meister, B.K.: On powers of Bessel functions. J. Math. Phys. 44(1), 309–314 (2003) · Zbl 1061.33003
[2] Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York (1989) · Zbl 0716.11001
[3] Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York (1991) · Zbl 0733.11001
[4] Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York (1998) · Zbl 0886.11001
[5] Berndt, B.C., Bhargava, S., Garvan, F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Am. Math. Soc. 347, 4163–4244 (1995) · Zbl 0843.33012
[6] Bertin, M.J.: Mesure de Mahler D’Hypersurfaces K3. Preprint (2005). See http://arxiv.org/abs/math/0501153 · Zbl 1201.11097
[7] Boyd, D.W.: Mahler’s measure and special values of L-functions. Exp. Math. 7, 37–82 (1998). Academic Press (1994) · Zbl 0932.11069
[8] Chan, H.H., Chan, S.H., Liu, Z.: Domb’s numbers and Ramanujan Sato type series for 1/{\(\pi\)}. Adv. Math. 186(2), 396–410 (2004) · Zbl 1122.11087
[9] Chan, H.H., Liaw, W.: Cubic modular equations and new Ramanujan-type series for 1/{\(\pi\)}. Pac. J. Math. 192(2), 219–238 (2000) · Zbl 1125.11317
[10] Joyce, G.S., Zucker, I.J.: On the evaluation of generalized Watson integrals. Proc. Am. Math. Soc. 133(1), 71–81 (2005). Electronic · Zbl 1060.33001
[11] Kurokawa, N., Ochiai, H.: Mahler measures via crystalization. Comment. Math. Univ. Sancti Pauli 54, 121–137 (2005) · Zbl 1091.11036
[12] Ramanujan, S.: Modular equations and approximations to {\(\pi\)}. Quart. J. Math. 45, 350–372 (1914). Collected papers of Srinivasa Ramanujan, 23–29. AMS Chelsea, Providence (2000) · JFM 45.1249.01
[13] Rodriguez-Villegas, F.: Modular Mahler measures I. Topics in number theory (University Park, PA, 1997). Math. Appl. 467, 17–48. Kluwer Academic, Dordrecht (1999) · Zbl 0980.11026
[14] Watson, G.N.: Three triple integrals. Quart. J. Math. Oxford Ser. 10, 266–276 (1939) · Zbl 0022.33202
[15] Weisstein, E.W.: Pi Formulas. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/PiFormulas.html
[16] Zudilin, W.: Quadratic transformations and Guillera’s formulae for 1/{\(\pi\)} 2. Preprint (2005). See http://wain.mi.ras.ru/publications.html · Zbl 1144.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.