Dixit, K. K.; Porwal, Saurabh A convolution approach on partial sums of certain analytic and univalent functions. (English) Zbl 1226.30013 JIPAM, J. Inequal. Pure Appl. Math. 10, No. 4, Paper No. 101, 9 p. (2009). Summary: We determine sharp lower bounds for \(\mathrm{Re}\left\{\frac{f(z)\ast \psi(z)}{f_{n}(z)\ast \psi(z)} \right\}\) and \(\mathrm{Re}\left\{\frac{f_n(z)\ast\psi(z)}{f(z)\ast\psi(z)}\right\}\). We extend some known results and correct certain conditions in theorems by B. A. Frasin, T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, as well as R. K. Raina and D. Bansal. Cited in 2 Documents MSC: 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) Keywords:analytic functions; univalent functions; convolution; partial sums PDF BibTeX XML Cite \textit{K. K. Dixit} and \textit{S. Porwal}, JIPAM, J. Inequal. Pure Appl. Math. 10, No. 4, Paper No. 101, 9 p. (2009; Zbl 1226.30013) Full Text: EMIS EuDML