A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training. (English) Zbl 1226.90062

Summary: Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. We establish global convergence and, under a local error bound assumption (which is satisfied by the SVM QP), linear rate of convergence for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We show that, for the SVM QP with \(n\) variables, this rule can be implemented in \(O(n)\) operations using Rockafellar’s notion of conformal realization. Thus, for SVM training, our method requires only \(O(n)\) operations per iteration and, in contrast to existing decomposition methods, achieves linear convergence without additional assumptions. We report our numerical experience with the method on some large SVM QP arising from two-class data classification. Our experience suggests that the method can be efficient for SVM training with nonlinear kernel.


90C20 Quadratic programming


Full Text: DOI


[1] Berman, P., Kovoor, N., Pardalos, P.M.: Algorithms for the least distance problem. In: Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 33–56. World Scientific, Singapore (1993) · Zbl 0968.90501
[2] Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
[3] Brucker, P.: An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3, 163–166 (1984) · Zbl 0544.90086
[4] Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001). Available from http://www.csie.ntu.edu.tw/\(\sim\)cjlin/libsvm
[5] Chang, C.-C., Hsu, C.-W., Lin, C.-J.: The analysis of decomposition methods for support vector machines. IEEE Trans. Neural Netw. 11, 1003–1008 (2000)
[6] Chen, P.-H., Fan, R.-E., Lin, C.-J.: A study on SMO-type decomposition methods for support vector machines. IEEE Trans. Neural Netw. 17, 893–908 (2006)
[7] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000) · Zbl 0994.68074
[8] Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005) · Zbl 1222.68198
[9] Ferris, M.C., Munson, T.S.: Interior-point methods for massive support vector machines. SIAM J. Optim. 13, 783–804 (2003) · Zbl 1039.90092
[10] Ferris, M.C., Munson, T.S.: Semismooth support vector machines. Math. Program. 101, 185–204 (2004) · Zbl 1076.90041
[11] Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2, 243–264 (2001) · Zbl 1037.68112
[12] Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987) · Zbl 0905.65002
[13] Glasmachers, T., Igel, C.: Maximum-gain working set selection for SVMs. J. Mach. Learn. Res. 7, 1437–1466 (2006) · Zbl 1222.90040
[14] Hush, D., Scovel, C.: Polynomial-time decomposition algorithms for support vector machines. Mach. Learn. 51, 51–71 (2003) · Zbl 1056.68118
[15] Hush, D., Kelly, P., Scovel, C., Steinwart, I.: QP algorithms with guaranteed accuracy and run time for support vector machines. J. Mach. Learn. Res. 7, 733–769 (2006) · Zbl 1222.68221
[16] Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods–Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)
[17] Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 46, 351–360 (2002) · Zbl 0998.68109
[18] Keerthi, S.S., Ong, C.J.: On the role of the threshold parameter in SVM training algorithm. Technical Report CD-00-09, Department of Mathematical and Production Engineering, National University of Singapore, Singapore (2000)
[19] Keerthi, S.S., Shevade, S.K.: SMO algorithm for least-squares SVM formulations. Neural Comput. 15, 487–507 (2003) · Zbl 1047.68100
[20] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13, 637–649 (2001) · Zbl 1085.68629
[21] Kiwiel, K.C.: On linear time algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 134, 549–554 (2007) · Zbl 1145.90077
[22] Lin, C.-J.: On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Netw. 12, 1288–1298 (2001) · Zbl 1012.94501
[23] Lin, C.-J.: Linear convergence of a decomposition method for support vector machines. Technical Report, Department of Computer Science and Information Engineering, Taiwan University, Taipei, Taiwan (2001)
[24] Lin, C.-J.: Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Netw. 13, 248–250 (2002)
[25] Lin, C.-J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm model for singly linearly constrained problems subject to lower and upper bounds. Technical Report, DIS-Università di Roma ”La Sapienza”, Rome, January (2007). To appear in J. Optim. Theory Appl. · Zbl 1168.90556
[26] List, N., Simon, H.U.: A general convergence theorem for the decomposition method. In: Proceedings of the 17th Annual Conference on Learning Theory, pp. 363–377 (2004) · Zbl 1078.68124
[27] List, N., Simon, H.U.: General polynomial time decomposition algorithms. In: Lecture Notes in Computer Science, vol. 3559, pp. 308–322. Springer, Berlin (2005) · Zbl 1127.68082
[28] Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: On the convergence of hybrid decomposition methods for SVM training. Technical Report, DIS-Università di Roma ”La Sapienza”, Rome, July 2006. Submitted to IEEE Trans. Neural Netw. · Zbl 1172.90443
[29] Luo, Z.-Q., Tseng, P.: Error bounds and the convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992) · Zbl 0777.49010
[30] Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46, 157–178 (1993) · Zbl 0793.90076
[31] Mangasarian, O.L., Musicant, D.R.: Successive overrelaxation for support vector machines. IEEE Trans. Neural Netw. 10, 1032–1037 (1999)
[32] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067
[33] Osuna, E., Freund, R., Girosi, F.: Improved training algorithm for support vector machines. In: Proc. IEEE NNSP’97 (1997)
[34] Palagi, L., Sciandrone, M.: On the convergence of a modified version of SVM light algorithm. Optim. Methods Softw. 20, 317–334 (2005) · Zbl 1072.90042
[35] Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)
[36] Rockafellar, R.T.: The elementary vectors of a subspace of R N . In: Bose, R.C., Dowling, T.A. (eds.) Combinatorial Mathematics and Its Applications, Proc. of the Chapel Hill Conference 1967, pp. 104–127. Univ. North Carolina Press, Chapel Hill (1969)
[37] Rockafellar, R.T.: Network Flows and Monotropic Optimization. Wiley, New York, 1984. Republished by Athena Scientific, Belmont (1998) · Zbl 0596.90055
[38] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)
[39] Saunders, C., Stitson, M.O., Weston, J., Bottou, L., Schölkopf., B., Smola, A.J.: Support vector machine–reference manual. Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London, Egham, UK (1998)
[40] Scheinberg, K.: An efficient implementation of an active set method for SVM. J. Mach. Learn. Res. 7, 2237–2257 (2006) · Zbl 1222.90043
[41] Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)
[42] Simon, H.U.: On the complexity of working set selection. In: Proceedings of the 15th International Conference on Algorithmic Learning Theory, pp. 324–337 (2004) · Zbl 1110.68468
[43] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002) · Zbl 1017.93004
[44] Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. B 117, 387–423 (2009) · Zbl 1166.90016
[45] Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982) · Zbl 0499.62005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.