×

Deformations of the hemisphere that increase scalar curvature. (English) Zbl 1227.53048

The authors disprove the Min-Oo conjecture [M. Min-Oo, “Scalar curvature rigidity of certain symmetric spaces”, CRM Proc. Lect. Notes 15, 127–136 (1998; Zbl 0911.53032)], which claims that a Riemannian metric \(g\) on the hemisphere \(S_+^n\), \(n \geq 3\), which coincides with the standard metric on the boundary, and which satisfies the following two properties:
1. the boundary is totally geodesic with respect to \(g\),
2. the scalar curvature of \(g\) is at least \(n(n-1)\),
is the standard spherical metric.
This conjecture was supported by a result by Miao (2002) about an analogous characterization of the Euclidean metric and by the generalization of a theorem of Miao by Y. Shi and L. F. Tam (2002).

MSC:

53C20 Global Riemannian geometry, including pinching

Citations:

Zbl 0911.53032
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998) · Zbl 0946.53021
[2] Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986) · Zbl 0598.53045
[3] Bartnik, R.: Energy in general relativity. In: Tsing Hua Lectures on Geometry and Analysis, Hsinchu, 1990–1991, pp. 5–27. Intl. Press, Cambridge (1997)
[4] Besse, A.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008) · Zbl 1147.53001
[5] Boualem, H., Herzlich, M.: Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces. Ann. Sc. Norm. Super. Pisa, Ser. V 1, 461–469 (2002) · Zbl 1170.53308
[6] Bray, H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. PhD Thesis, Stanford University (1997)
[7] Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001) · Zbl 1039.53034
[8] Bray, H., Brendle, S., Eichmair, M., Neves, A.: Area-minimizing projective planes in three-manifolds. Commun. Pure Appl. Math. 63, 1237–1247 (2010) · Zbl 1200.53053
[9] Bray, H., Brendle, S., Neves, A.: Rigidity of area-minimizing two-spheres in three-manifolds. Commun. Anal. Geom. (to appear) · Zbl 1226.53054
[10] Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21, 951–979 (2008) · Zbl 1206.53041
[11] Brendle, S.: Ricci Flow and the Sphere Theorem. Graduate Studies in Mathematics, vol. 111. Am. Math. Soc., Providence (2010) · Zbl 1196.53001
[12] Brendle, S.: Rigidity phenomena involving scalar curvature. Surv. Differ. Geom. (to appear) · Zbl 1382.53012
[13] Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation II. J. Differ. Geom. 81, 225–250 (2009) · Zbl 1166.53025
[14] Brendle, S., Marques, F.C.: Scalar curvature rigidity of geodesic balls in S n . arxiv:1005.2782 · Zbl 1237.53037
[15] Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212, 231–264 (2003) · Zbl 1056.53025
[16] Chruściel, P.T., Nagy, G.: The mass of spacelike hypersurfaces in asymptotically anti-de-Sitter space-times. Adv. Theor. Math. Phys. 5, 697–754 (2001) · Zbl 1033.53061
[17] Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000) · Zbl 1031.53064
[18] Eichmair, M.: The size of isoperimetric surfaces in 3-manifolds and a rigidity result for the upper hemisphere. Proc. Am. Math. Soc. 137, 2733–2740 (2009) · Zbl 1187.53038
[19] Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42, 519–547 (1975) · Zbl 0336.53032
[20] Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional Analysis on the Eve of the 21st Century, Vol. II, New Brunswick, 1993. Progr. Math., vol. 132, pp. 1–213. Birkhäuser, Boston (1996)
[21] Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group. Ann. Math. 111, 209–230 (1980) · Zbl 0445.53025
[22] Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. IHÉS 58, 83–196 (1983) · Zbl 0538.53047
[23] Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006) · Zbl 1119.53029
[24] Hang, F., Wang, X.: Rigidity theorems for compact manifolds with boundary and positive Ricci curvature. J. Geom. Anal. 19, 628–642 (2009) · Zbl 1175.53056
[25] Herzlich, M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312, 641–657 (1998) · Zbl 0946.53022
[26] Huang, L., Wu, D.: Rigidity theorems on hemispheres in non-positive space forms. Commun. Anal. Geom. 18, 339–363 (2010) · Zbl 1217.53041
[27] Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996. Lecture Notes in Mathematics, vol. 1713, pp. 45–84. Springer, Berlin (1999) · Zbl 0942.35047
[28] Li, P.: Lecture Notes on Geometric Analysis. Lecture Notes Series, vol. 6. Seoul National University, Seoul (1993) · Zbl 0822.58001
[29] Listing, M.: Scalar curvature on compact symmetric spaces. arxiv:1007.1832 · JFM 07.0699.03
[30] Llarull, M.: Sharp estimates and the Dirac operator. Math. Ann. 310, 55–71 (1998) · Zbl 0895.53037
[31] Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140, 655–683 (1994) · Zbl 0824.53033
[32] Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, 385–407 (1999) · Zbl 0943.53024
[33] Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)
[34] Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989) · Zbl 0686.53038
[35] Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces. In: Geometry, Topology, and Dynamics, Montreal, 1995. CRM Proc. Lecture Notes, vol. 15, pp. 127–137. Am. Math. Soc., Providence (1998)
[36] Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982) · Zbl 0528.58040
[37] Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979) · Zbl 0405.53045
[38] Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature. Ann. Math. 110, 127–142 (1979) · Zbl 0431.53051
[39] Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28, 159–183 (1979) · Zbl 0423.53032
[40] Shi, Y., Tam, L.F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002) · Zbl 1071.53018
[41] Toponogov, V.: Evaluation of the length of a closed geodesic on a convex surface. Dokl. Akad. Nauk SSSR 124, 282–284 (1959) · Zbl 0092.14603
[42] Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57, 273–299 (2001) · Zbl 1037.53017
[43] Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981) · Zbl 1051.83532
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.