×

A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks. (English) Zbl 1227.76008

Summary: A fractal model is presented for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks. The proposed model relates the starting pressure gradient to the structural parameters of porous media and microstructural parameters of the fractal-like tree networks, the yield stress and fractal dimensions. The model predictions from the present model for the starting pressure gradient are compared with the available expression. Good agreement is obtained between the predictions by the proposed expression Eq. (17) for the starting pressure gradient with those from the available expression.

MSC:

76A10 Viscoelastic fluids
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Scheidegger, A. E.: The physics of flow through porous media, (1974) · Zbl 0082.40402
[2] A.T. \Gamma opЪyhob, The Development of the Singular Oil Field, Shubao Zhang (translator), Petroleum Industry Press, Beijing, 1987 (in Chinese).
[3] Balhoff, M. T.; Thompson, K. E.: Modeling the steady flow of yield-stress fluids in packed beds, Aiche j. 50, 3034-3048 (2004)
[4] Liu, Y. W.; He, F. Z.: Three kinds of methods for determining the starting pressure gradient in low permeability reservoir, Well testing 11, 1-4 (2002)
[5] Wang, S. J.; Huang, Y. Z.; Civan, F.: Experimental and theoretical investigation of the zaoyuan field heavy oil flow through porous media, J. petrol. Sci. eng. 50, 83-101 (2006)
[6] Yun, M. J.; Yu, B. M.; Lu, J. D.; Zheng, W.: Fractal analysis of Herschel – Bulkley fluid flow in porous media, Int. J. Heat mass transfer 53, 3570-3574 (2010) · Zbl 1425.76023
[7] Yun, M. J.; Yu, B. M.; Cai, J. C.: A fractal model for the starting pressure gradient for Bingham fluids in porous media, Int. J. Heat mass transfer 51, 1402-1408 (2008) · Zbl 1388.76019
[8] Li, Y.; Yu, B. M.: Study of the starting pressure gradient in branching network, Science in China E 53, 2397-2403 (2010) · Zbl 1383.76018
[9] Bejan, A.: Constructal theory network of conducting paths for cooling a heat generating volume, Int. J. Heat mass transfer 40, 799-816 (1997) · Zbl 0925.73042
[10] Chen, Y. P.; Cheng, P.: Heat transfer and pressure drop in fractal tree-like microchannel nets, Int. J. Heat mass transfer 45, 2643-2648 (2002) · Zbl 1010.76085
[11] Chen, Y. P.; Wu, R.; Shi, M. H.; Wu, J. F.; Peterson, G. P.: Visualization study of steam condensation in triangular microchannels, Int. J. Heat mass transfer 52, 5122-5129 (2009)
[12] Yu, B. M.; Cheng, P.: A fractal model for permeability of bi-dispersed porous media, Int. J. Heat mass transfer 45, 2983-2993 (2002) · Zbl 1101.76408
[13] Yu, B. M.; Li, J. H.: Some fractal characters of porous media, Fractals 9, 365-372 (2001)
[14] Yu, B. M.: Fractal character for tortuous streamtubes in porous media, Chin. phys. Lett. 22, 158-160 (2005)
[15] Cihan, A.; Sukop, M. C.; Tyner, J. S.; Perfect, E.; Huang, H.: Analytical predictions and lattice Boltzmann simulations of intrinsic permeability for mass fractal porous media, Vadose zone J. 8, 187-196 (2009)
[16] Chen, J.; Yu, B. M.; Xu, P.; Li, Y. H.: Fractal-like tree networks increasing the permeability, Phys. rev. E 75, 056301-056308 (2007)
[17] Xu, P.; Yu, B. M.; Feng, Y. J.; Liu, Y. J.: Analysis of permeability for the fractal-like tree network by parallel and series models, Physica A 369, 884-894 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.