×

zbMATH — the first resource for mathematics

Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. (English) Zbl 1227.76031
Summary: This paper considers three iterative methods for solving the stationary Navier-Stokes equations. Iterative method I consists in solving the stationary Stokes equations, iterative method II consists in solving the stationary linearized Navier-Stokes equations and iterative method III consists in solving the stationary Oseen equations under the finite element discretization, respectively, at each iterative step. Also, we discuss the stability and convergence of three iterative methods. The iterative methods I and II are stability and convergence under the strong uniqueness conditions, where the iterative method II is the second order convergence. Furthermore, the iterative method III is uncondition stability and convergence under the uniqueness condition. Finally, some numerical tests show that the efficiency of the theoretical analysis.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Ait, A.; Ammi, Ou.; Marion, M., Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the navier – stokes equations, Numer. math., 68, 189-213, (1994) · Zbl 0811.76035
[3] Baker, G.A.; Dougalis, V.A.; Karakashian, O.A., On a high order accurate fully discrete Galerkin approximation to the navier – stokes equations, Math. comput., 39, 339-375, (1982) · Zbl 0503.76038
[4] Bercovier, J.; Pironneau, O., Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. math., 33, 211-224, (1979) · Zbl 0423.65058
[5] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[6] Girault, V.; Raviart, P.A., Finite element method for navier – stokes equations: theory and algorithms, (1986), Springer-Verlag Berlin, Heidelberg · Zbl 0396.65070
[7] He, Yinnian; Wang, Aiwen; Mei, Liquan, Stabilized finite element methods for the stationary navier – stokes equations, J. engrg. math., 51, 367-380, (2005) · Zbl 1069.76031
[8] He, Yinnian; Li, Kaitai, Two-level stabilized finite element methods for the steady navier – stokes equations, Computing, 74, 337-351, (2005) · Zbl 1099.65111
[9] He, Yinnian; Wang, Aiwen; Chen, Zhangxin; Li, Kaitai, An optimal nonlinear Galerkin method with mixed finite elements for the steady navier – stokes equations, Numer. methods pdes, 19, 762-775, (2003) · Zbl 1134.76385
[10] He, Yinnian; Miao, Huanling; Mattheij, R.M.M.; Chen, Zhangxin, Numerical analysis of a modified finite element nonlinear Galerkin method, Numer. math., 97, 4, 725-756, (2004) · Zbl 1059.65088
[11] He, Yinnian; Li, Kaitai, Nonlinear Galerkin method and two-step method for the navier – stokes equations, Numer. methods pdes, 12, 283-305, (1996) · Zbl 0852.76042
[12] He, Yinnian; Li, Kaitai, Convergence and stability of finite element nonlinear Galerkin method for the navier – stokes equations, Numer. math., 79, 77-106, (1998) · Zbl 0903.76052
[13] He, Yinnian, Two-level method based on finite element and crank – nicolson extrapolation for the time-dependent navier – stokes equations, SIAM J. numer. anal., 41, 4, 1263-1285, (2003) · Zbl 1130.76365
[14] He, Yinnian; Li, Kaitai, Asymptotic behavior and time discretization analysis for the nonstationary navier – stokes problem, Numer. math., 98, 4, 647-673, (2004) · Zbl 1140.76322
[15] He, Yinnian; Sun, Weiwei, Stability and convergence of the crank – nicolson/ adams – bashforth scheme for the time-dependent navier – stokes equations, SIAM J. numer. anal., 45, 2, 837-869, (2007) · Zbl 1145.35318
[16] He, Yinnian; Li, Jian, A stabilized finite element method based on local polynomial pressure projection for the stationary navier – stokes equations, Appl. numer. math., 58, 10, 1503-1514, (2008) · Zbl 1155.35406
[17] He, Yinnian; Wang, Aiwen, A simplified two-level method for the steady navier – stokes equations, Comput. methods appl. mech. engrg., 197, 17-18, 1568-1576, (2008) · Zbl 1194.76120
[18] Heywood, J.G.; Rannacher, R., Finite-element approximations of the nonstationary navier – stokes problem. part I: regularity of solutions and second-order spatial discretization, SIAM J. numer. anal., 19, 275-311, (1982) · Zbl 0487.76035
[19] Heywood, J.G.; Rannacher, R., Finite-element approximations of the nonstationary navier – stokes problem. part II: stability of the solution and error estimates uniform in time, SIAM J. numer. anal., 23, 750-777, (1986) · Zbl 0611.76036
[20] Heywood, J.G.; Rannacher, R., Finite-element approximations of the nonstationary navier – stokes problem. part III: smoothing property and higher order error estimates for spatial discretization, SIAM J. numer. anal., 25, 489-512, (1988) · Zbl 0646.76036
[21] Hill, A.T.; Süli, E., Approximation of the global attractor for the incompressible navier – stokes equations, IMA J. numer. anal., 20, 633-667, (2000) · Zbl 0982.76022
[22] Johnston, H.; Liu, J.-G., Accurate, stable and efficient navier – stokes slovers based on explicit treatment of the pressure term, J. comput. phys., 199, 221-259, (2004) · Zbl 1127.76343
[23] Kellogg, R.B.; Osborn, J.E., A regularity result for the Stokes problem in a convex polygon, J. funct. anal., 21, 397-431, (1976) · Zbl 0317.35037
[24] Larsson, S., The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems, SIAM J. numer. anal., 26, 348-365, (1989) · Zbl 0677.65110
[25] Li, Kaitai; Hou, Yanren, An AIM and one-step Newton method for the navier – stokes equations, Comput. methods appl. mech. engrg., 190, 6141-6155, (2001) · Zbl 1011.76045
[26] Li, Kaitai; He, Yinnian, Taylor expansion algorithm for the branching solution of the navier – stokes equations, Int. J. numer. anal. model., 2, 459-478, (2005) · Zbl 1100.35079
[27] Li, Kaitai, Aixiang huang and qinghuai huang, Finite element methods and their applications, (2006), Academic Press Beijing
[28] Marion, M.; Temam, R., Navier – stokes equations: theory and approximation, (), 503-688 · Zbl 0921.76040
[29] Shen, J., Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. anal., 38, 201-229, (1990) · Zbl 0684.65095
[30] Simo, J.C.; Armero, F., Unconditional stability and long-term behavior of transient algorithms for the incompressible navier – stokes and Euler equations, Comput. methods appl. mech. engrg., 111, 111-154, (1994) · Zbl 0846.76075
[31] Temam, R., Navier – stokes equations, theory and numerical analysis, (1984), North-Holland Amsterdam · Zbl 0568.35002
[32] Temam, R., Infinite dimensional dynamical systems in mechanics and physics, (1988), Springer-Verlag New york, Berlin, Heidelberg · Zbl 0662.35001
[33] Tone, F., Error analysis for a second scheme for the navier – stokes equations, Appl. numer. math., 50, 93-119, (2004) · Zbl 1093.76046
[34] Zhou, Xiaolin; He, Yinnian, Using divergence free wavelets for the numerical solution of the 2-D stationary navier – stokes equations, Appl. math. comput., 163, 593-607, (2005) · Zbl 1077.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.