×

Discontinuities and hysteresis in quantized average consensus. (English) Zbl 1227.93004

Summary: We consider continuous-time average consensus dynamics in which the agents’ states are communicated through uniform quantizers. Solutions to the resulting system are defined in the Krasovskii sense and are proven to converge to conditions of “practical consensus”. To cope with undesired chattering phenomena, we introduce a hysteretic quantizer, and we study the convergence properties of the resulting dynamics by a hybrid system approach.

MSC:

93A14 Decentralized systems
94C15 Applications of graph theory to circuits and networks
93A30 Mathematical modelling of systems (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Aubin, J.P.; Cellina, A., ()
[2] Aysal, T.C.; Coates, M.J.; Rabbat, M.G., Distributed average consensus with dithered quantization, IEEE transactions on signal processing, 56, 10, 4905-4918, (2008) · Zbl 1390.94083
[3] Bacciotti, A.; Ceragioli, F., Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM: control, optimisation & calculus of variations, 4, 361-376, (1999) · Zbl 0927.34034
[4] Bullo, F.; Cortés, J.; Martínez, S., Distributed control of robotic networks, ()
[5] Carli, R.; Bullo, F.; Zampieri, S., Quantized average consensus via dynamic coding/decoding schemes, International journal of robust and nonlinear control, 20, 2, 156-175, (2010) · Zbl 1290.93005
[6] Carli, R.; Fagnani, F.; Frasca, P.; Zampieri, S., Gossip consensus algorithms via quantized communication, Automatica, 46, 1, 70-80, (2010) · Zbl 1214.93122
[7] Cortés, J., Finite-time convergent gradient flows with applications to network consensus, Automatica, 42, 11, 1993-2000, (2006) · Zbl 1261.93058
[8] Cortés, J., Discontinuous dynamical systems – a tutorial on solutions, nonsmooth analysis, and stability, IEEE control systems magazine, 28, 3, 36-73, (2008) · Zbl 1395.34023
[9] Cortés, J., Distributed algorithms for reaching consensus on general functions, Automatica, 44, 3, 726-737, (2008) · Zbl 1283.93016
[10] Deimling, K., Multivalued differential equations, (1992), De Gruyter Berlin · Zbl 0760.34002
[11] Dimarogonas, D.V.; Johansson, K.H., Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control, Automatica, 46, 4, 695-700, (2010) · Zbl 1193.93059
[12] Filippov, A.F., ()
[13] Frasca, P.; Carli, R.; Fagnani, F.; Zampieri, S., Average consensus on networks with quantized communication, International journal of robust and nonlinear control, 19, 16, 1787-1816, (2009) · Zbl 1298.93314
[14] Goebel, R.; Sanfelice, R.G.; Teel, A.R., Hybrid dynamical systems, IEEE control systems magazine, 29, 2, 28-93, (2009) · Zbl 1395.93001
[15] Hájek, O., Discontinuous differential equations I, Journal of differential equations, 32, 149-170, (1979) · Zbl 0365.34017
[16] Kashyap, A.; Başar, T.; Srikant, R., Quantized consensus, Automatica, 43, 7, 1192-1203, (2007) · Zbl 1123.93090
[17] Li, T.; Fu, M.; Xie, L.; Zhang, J.-F., Distributed consensus with limited communication data rate, IEEE transactions on automatic control, 56, 2, 279-292, (2011) · Zbl 1368.93346
[18] Nedic, A.; Olshevsky, A.; Ozdaglar, A.; Tsitsiklis, J.N., On distributed averaging algorithms and quantization effects, IEEE transactions on automatic control, 54, 11, 2506-2517, (2009) · Zbl 1367.93405
[19] Nemytskii, V.V.; Stepanov, V.V., Qualitative theory of differential equations, (1960), Dover Publications New York · Zbl 0089.29502
[20] Paden, B.; Sastry, S.S., A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot manipulators, IEEE transactions on circuits and systems, 34, 1, 73-82, (1987) · Zbl 0632.34005
[21] Penrose, M., Random geometric graphs, () · Zbl 1029.60007
[22] Yu, J., LaValle, S.M., & Liberzon, D. (2008). Rendezvous without coordinates. In IEEE Conference on Decision and Control (pp. 1803-1808) Cancún, México. · Zbl 1369.93427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.