×

zbMATH — the first resource for mathematics

Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. (English) Zbl 1227.93008
Summary: As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed dynamic tracking control is designed by employing an event-triggered technique. Then, the input-to-state stability of the closed-loop multi-agent system with directed interconnections is analyzed. Finally, a numerical example is given to validate the proposed control.

MSC:
93A14 Decentralized systems
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Systems Technol. 19 (2011), 929-938. · doi:10.1109/TCST.2010.2053542
[2] Dimarogonas, D. V., Frazzoli, E.: Distributed event-triggered strategies for multi-agent systems. Proc. 47th Annual Allerton Conference on Communications, Control and Computing, Monticello 2009, pp. 906-910.
[3] Dimarogonas, D. V., Johansson, K. H.: Event-triggered control for multi-agent systems. Proc. IEEE CDC/CCC2009, Shanghai 2009, pp. 7131-7136.
[4] Eqtami, A., Dimarogonas, D. V., Kyriakopoulos, K. J.: Event-triggered control for discrete-time systems. Proc. American Control Conference, Baltimore 2010, pp. 4719-4724.
[5] Gao, Y., Wang, L.: Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements. Internat. J. Control 83 (2010), 552-562. · Zbl 1222.93009 · doi:10.1080/00207170903297192
[6] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[7] Hale, J. K., Lunel, S. M. V.: Introduction to the Theory of Functional Differential Equations. Applied Mathematical Sciences, Springer, New York 1991.
[8] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013 · arxiv:0705.0403
[9] Hu, J.: On robust consensus of multi-agent systems with communication time-delays. Kybernetika 45 (2009), 768-784. · Zbl 1190.93003 · www.kybernetika.cz · eudml:37700
[10] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. · Zbl 1204.93011 · doi:10.1016/j.automatica.2010.05.020 · arxiv:1108.1855
[11] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374 (2007), 853-863. · doi:10.1016/j.physa.2006.08.015
[12] Kingston, D. B., Ren, W., Beard, R.: Consensus algorithms are inputto-state stable. Proc. American Control Conference 2005, pp. 1686-1690.
[13] Li, T., Zhang, J.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45 (2009), 1929-1936. · Zbl 1185.93006 · doi:10.1016/j.automatica.2009.04.017
[14] Liu, Z., Chen, Z.: Event-triggered average-consensus for multi-agent systems. Proc. 29th Chinese Control Conference, Beijing 2010, pp. 4506-4511.
[15] Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: an H-infinity analysis approach. Internat. J. Robust Nonlinear Control 20 (2010), 1579-1593. · Zbl 1204.93043 · doi:10.1002/rnc.1531
[16] Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50 (2005), 169-182. · Zbl 1365.93268 · doi:10.1109/TAC.2004.841888
[17] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[18] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45 (2009), 1165-1175. · Zbl 1162.93308 · doi:10.1016/j.automatica.2008.12.015
[19] Sontag, E. D.: Input to state stability: basic concepts and results. Proc. CIME Summer Course on Nonlinear and Optimal Control Theory 2004, pp. 462-488.
[20] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685. · Zbl 1366.90104 · doi:10.1109/TAC.2007.904277
[21] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. · Zbl 1368.93577 · doi:10.1109/TAC.2010.2076250
[22] Wang, X., Lemmon, M. D.: Event-triggering in distributed networked control systems. IEEE Trans. Automat. Control 56 (2011), 586-601. · Zbl 1368.93211 · doi:10.1109/TAC.2010.2057951
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.