×

Commutative association schemes. (English) Zbl 1228.05317

Summary: Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the “commutative case”, has seen significant activity in the last few decades.
The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver’s SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.

MSC:

05E30 Association schemes, strongly regular graphs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Abdukhalikov, K.; Bannai, E.; Suda, S., Association schemes related to universally optimal configurations, kerdock codes and extremal Euclidean line-sets, J. combin. theory ser. A, 116, 434-448, (2009) · Zbl 1250.05119
[2] Akazawa, H.; Mizukawa, H., Orthogonal polynomials arising from the wreath products of a dihedral group with a symmetric group, J. combin. theory ser. A, 104, 371-380, (2003) · Zbl 1064.33009
[3] Andrews, G.E.; Askey, R., Classical orthogonal polynomials, (), 36-62
[4] Assmus, E.F.; Mattson, H.F., New 5-designs, J. combin. theory, 6, 122-151, (1969) · Zbl 0179.02901
[5] Bachoc, C., On harmonic weight enumerators of binary codes, Des. codes cryptogr., 18, 11-28, (1999) · Zbl 0961.94012
[6] Bachoc, C., Harmonic weight enumerators of nonbinary codes and MacWilliams identities, (), 1-23 · Zbl 1017.94012
[7] Bachoc, C.; Vallentin, F., New upper bounds for kissing numbers from semidefinite programming, J. amer. math. soc., 21, 909-924, (2008) · Zbl 1223.90039
[8] Bailey, R.A., Association schemes: designed experiments, algebra and combinatorics, (2004), Cambridge University Press Cambridge · Zbl 1051.05001
[9] S. Bang, T. Fujisaki, J.H. Koolen, The spectra of the local graphs of the twisted Grassmann graphs, European J. Combin., in press (doi:10.1016/j.ejc.2008.07.016) · Zbl 1172.05333
[10] Bang, S.; Koolen, J.H.; Moulton, V., Two theorems concerning the bannai – ito conjecture, European J. combin., 28, 2026-2052, (2007) · Zbl 1121.05126
[11] Bannai, E., Character tables of commutative association schemes, (), 105-128 · Zbl 0757.05100
[12] Bannai, E., Subschemes of some association schemes, J. algebra, 144, 167-188, (1991) · Zbl 0762.20004
[13] Bannai, E., Association schemes and fusion algebras (an introduction), J. algebraic combin., 2, 327-344, (1993) · Zbl 0790.05098
[14] E. Bannai, An introduction to association schemes, in: S. Löwe, F. Mazzocca, N. Melone, U. Ott (Eds.), Methods of Discrete Mathematics, Dipartimento di Matematica, Seconda Universitá di Napoli, Napoli, 1999, pp. 1-70 · Zbl 0967.05068
[15] Bannai, E.; Bannai, E., Generalized generalized spin models (four-weight spin models), Pacific J. math., 170, 1-16, (1995) · Zbl 0848.05072
[16] Bannai, E.; Bannai, E., On primitive symmetric association schemes with \(m_1 = 3\), Contrib. discrete math., 1, 68-79, (2006) · Zbl 1093.05073
[17] Bannai, E.; Bannai, E., A survey on spherical designs and algebraic combinatorics on spheres, European J. combin., 30, 6, 1392-1425, (2009) · Zbl 1207.05022
[18] Bannai, E.; Bannai, E.; Jaeger, F., On spin models, modular invariance, and duality, J. algebraic combin., 6, 203-228, (1997) · Zbl 0880.05083
[19] Bannai, E.; Hao, S.; Song, S.-Y., Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points, J. combin. theory ser. A, 54, 164-200, (1990) · Zbl 0762.20005
[20] Bannai, E.; Ito, T., Algebraic combinatorics I: association schemes, (1984), Benjamin/Cummings Menlo Park, CA · Zbl 0555.05019
[21] Bannai, E.; Kawanaka, N.; Song, S.-Y., The character table of the Hecke algebra \(\mathcal{H}(G L_{2 n}(\mathbb{F}_q), S p_{2 n}(\mathbb{F}_q))\), J. algebra, 129, 320-366, (1990)
[22] Bannai, E.; Shimabukuro, O.; Tanaka, H., Finite analogues of non-Euclidean spaces and Ramanujan graphs, European J. combin., 25, 243-259, (2004) · Zbl 1033.05099
[23] E. Bannai, O. Shimabukuro, H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, 2002, preprint · Zbl 1208.05046
[24] Bierbrauer, J., A direct approach to linear programming bounds for codes and tms-nets, Des. codes cryptogr., 42, 127-143, (2007) · Zbl 1148.94017
[25] Blau, H., Table algebras, European J. combin., 30, 6, 1426-1455, (2009) · Zbl 1229.05291
[26] Bose, R.C.; Mesner, D.M., On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. math. statist., 30, 21-38, (1959) · Zbl 0089.15002
[27] Bose, R.C.; Nair, K.R., Partially balanced incomplete block designs, Sankhyā, 4, 337-372, (1939)
[28] Bose, R.C.; Shimamoto, T., Classification and analysis of partially balanced incomplete block designs with two associate classes, J. amer. statist. assoc., 47, 151-184, (1952) · Zbl 0048.11603
[29] P.O. Boykin, M. Sitharam, M. Tarifi, P. Wocjan, Real mutually unbiased bases, arXiv:quant-ph/0502024, preprint · Zbl 1152.81680
[30] Brouwer, A.E.; Cohen, A.M.; Neumaier, A., Distance-regular graphs, (1989), Springer-Verlag Berlin · Zbl 0747.05073
[31] Brouwer, A.E.; Godsil, C.D.; Koolen, J.H.; Martin, W.J., Width and dual width of subsets in polynomial association schemes, J. combin. theory ser. A, 102, 255-271, (2003) · Zbl 1018.05108
[32] Calderbank, A.R.; Cameron, P.J.; Kantor, W.M.; Seidel, J.J., \(\mathbb{Z}_4\)-kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London math. soc., 75, 436-480, (1997) · Zbl 0916.94014
[33] Calderbank, A.R.; Delsarte, P., Extending the \(t\)-design concept, Trans. amer. math. soc., 338, 941-952, (1993) · Zbl 0783.05028
[34] Calderbank, A.R.; Delsarte, P.; Sloane, N.J.A., A strengthening of the assmus – mattson theorem, IEEE trans. inform. theory, 37, 1261-1268, (1991) · Zbl 0734.94018
[35] Cameron, P.J.; van Lint, J.H., Designs, graphs, codes and their links, (1991), Cambridge University Press Cambridge · Zbl 0743.05004
[36] Cameron, P.J.; Seidel, J.J., Quadratic forms over \(G F(2)\), Nederl. akad. wetensch. proc. ser. A 76=indag. math., 35, 1-8, (1973) · Zbl 0258.05022
[37] Camion, P., Codes and association schemes: basic properties of association schemes relevant to coding, (), 1441-1566 · Zbl 0978.94048
[38] Caughman, J.S.; Wolff, N., The Terwilliger algebra of a distance-regular graph that supports a spin model, J. algebraic combin., 21, 289-310, (2005) · Zbl 1064.05152
[39] Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F., Harmonic analysis on finite groups, (2008), Cambridge University Press Cambridge · Zbl 1182.43010
[40] D.R. Cerzo, H. Suzuki, Non-existence of imprimitive \(Q\)-polynomial schemes of exceptional type with \(d = 4\), European J. Combin., in press (doi:10.1016/j.ejc.2008.07.014) · Zbl 1169.05053
[41] A. Chan, Jones pairs, Ph.D. Thesis, University of Waterloo, 2001, arXiv:0707.1848
[42] Chan, A.; Godsil, C., Bose – mesner algebras attached to invertible Jones pairs, J. combin. theory ser. A, 106, 165-191, (2004) · Zbl 1042.05095
[43] A. Chan, C. Godsil, Type-II matrices and combinatorial structures, arXiv:0707.1836, preprint · Zbl 1224.05502
[44] Chan, A.; Godsil, C.; Munemasa, A., Four-weight spin models and Jones pairs, Trans. amer. math. soc., 355, 2305-2325, (2003) · Zbl 1012.05162
[45] Chu, W.; Colbourn, C.J.; Dukes, P., Constructions for permutation codes in powerline communications, Des. codes cryptogr., 32, 51-64, (2004) · Zbl 1065.94003
[46] Curtin, B., Spin leonard pairs, Ramanujan J., 13, 319-332, (2007) · Zbl 1118.05101
[47] Curtin, B.; Nomura, K., Spin models and strongly hyper-self-dual bose – mesner algebras, J. algebraic combin., 13, 173-186, (2001) · Zbl 0979.05111
[48] Curtis, C.W.; Reiner, I., Methods of representation theory I, (1990), John Wiley & Sons New York
[49] van Dam, E.R.; Koolen, J.H., A new family of distance-regular graphs with unbounded diameter, Invent. math., 162, 189-193, (2005) · Zbl 1074.05092
[50] E.R. van Dam, M. Muzychuk, Some implications on amorphic association schemes, preprint · Zbl 1286.05183
[51] DeDeo, M.; Lanphier, D.; Minei, M., The spectrum of platonic graphs over finite fields, Discrete math., 307, 1074-1081, (2007) · Zbl 1114.05079
[52] Delsarte, P., An algebraic approach to the association schemes of coding theory, Philips res. rep., Suppl. 10, (1973) · Zbl 1075.05606
[53] Delsarte, P., Association schemes and \(t\)-designs in regular semilattices, J. combin. theory ser. A, 20, 230-243, (1976) · Zbl 0342.05020
[54] Delsarte, P., Pairs of vectors in the space of an association scheme, Philips res. rep., 32, 373-411, (1977)
[55] Delsarte, P., Hahn polynomials, discrete harmonics, and \(t\)-designs, SIAM J. appl. math., 34, 157-166, (1978) · Zbl 0429.05031
[56] Delsarte, P., Bilinear forms over a finite field, with applications to coding theory, J. combin. theory ser. A, 25, 226-241, (1978) · Zbl 0397.94012
[57] Delsarte, P., Beyond the orthogonal array concept, European J. combin., 25, 187-198, (2004) · Zbl 1044.94017
[58] Delsarte, P.; Goethals, J.M.; Seidel, J.J., Bounds for systems of lines and Jacobi polynomials, Philips res. rep., 30, 91-105, (1975) · Zbl 0322.05023
[59] Delsarte, P.; Levenshtein, V.I., Association schemes and coding theory, IEEE trans. inform. theory, 44, 2477-2504, (1998) · Zbl 0946.05086
[60] Diaconis, P.; Isaacs, I.M., Supercharacters and superclasses for algebra groups, Trans. amer. math. soc., 360, 2359-2392, (2008) · Zbl 1137.20008
[61] Dinitz, J.H., Room squares, (), 584-590 · Zbl 0524.05015
[62] Dunkl, C.F., A krawtchouk polynomial addition theorem and wreath products of symmetric groups, Indiana univ. math. J., 25, 335-358, (1976) · Zbl 0326.33008
[63] Erdős, P.; Ko, C.; Rado, R., Intersection theorems for systems of finite sets, Quart. J. math. Oxford ser. (2), 12, 313-320, (1961) · Zbl 0100.01902
[64] Evdokimov, S.; Ponomarenko, I., Permutation group approach to association schemes, European J. combin., 30, 6, 1456-1476, (2009) · Zbl 1228.05311
[65] Frankl, P.; Wilson, R.M., The erdős – ko – rado theorem for vector spaces, J. combin. theory ser. A, 43, 228-236, (1986) · Zbl 0609.05055
[66] Fujisaki, T., A construction of amorphous association scheme from a pseudo-cyclic association scheme, Discrete math., 285, 307-311, (2004) · Zbl 1044.05070
[67] V. Galliard, S. Wolf, A. Tapp, The impossibility of pseudo-telepathy without quantum entanglement, in: Proceedings, IEEE International Symposium on Information Theory, Yokohama, Japan, 2003, p. 457, arXiv:quant-ph/0211011
[68] Gannon, T., Modular data: the algebraic combinatorics of conformal field theory, J. algebraic combin., 22, 211-250, (2005) · Zbl 1103.17007
[69] D. Gijswijt, Matrix algebras and semidefinite programming techniques for codes, Ph.D. Thesis, The Universiteit van Amsterdam, 2005 · Zbl 1113.90101
[70] Gijswijt, D.; Schrijver, A.; Tanaka, H., New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. combin. theory ser. A, 113, 1719-1731, (2006) · Zbl 1105.94027
[71] Go, J.T., The Terwilliger algebra of the hypercube, European J. combin., 23, 399-429, (2002) · Zbl 0997.05097
[72] Go, J.T.; Terwilliger, P., Tight distance-regular graphs and the subconstituent algebra, European J. combin., 23, 793-816, (2002) · Zbl 1014.05070
[73] Godsil, C.D., Algebraic combinatorics, (1993), Chapman & Hall New York · Zbl 0814.05075
[74] Godsil, C.D.; Hensel, A.D., Distance regular covers of the complete graph, J. combin. theory ser. B, 56, 205-238, (1992) · Zbl 0771.05031
[75] Godsil, C.D.; Newman, M.W., Coloring an orthogonality graph, SIAM J. discrete math., 22, 683-692, (2008) · Zbl 1167.05314
[76] Grant, D.; Varanasi, M.K., Duality theory for space – time codes over finite fields, Adv. math. commun., 2, 35-54, (2008) · Zbl 1275.94041
[77] Henderson, A., Spherical functions of the symmetric space \(G(\mathbb{F}_{q^2}) / G(\mathbb{F}_q)\), Represent. theory, 5, 581-614, (2001) · Zbl 0986.20042
[78] Higman, D.G., Strongly regular designs of the second kind, European J. combin., 16, 479-490, (1995) · Zbl 0832.05101
[79] Hollmann, H.D.L.; Xiang, Q., Association schemes from the action of \(P G L(2, q)\) fixing a nonsingular conic in \(P G(2, q)\), J. algebraic combin., 24, 157-193, (2006) · Zbl 1100.05101
[80] Hosoya, R.; Suzuki, H., Tight distance-regular graphs with respect to subsets, European J. combin., 28, 61-74, (2007) · Zbl 1105.05075
[81] Huang, T., An analogue of the erdős – ko – rado theorem for the distance-regular graphs of bilinear forms, Discrete math., 64, 191-198, (1987) · Zbl 0651.05006
[82] M. Huber, Coding theory and algebraic combinatorics, in: I. Woungang, S. Misra, S.C. Misra (Eds.), Selected Topics in Information and Coding Theory, World Scientific, Singapore, arXiv:0811.1254 (in press)
[83] T. Ikuta, A. Munemasa, Cyclotomic association schemes and strongly regular graphs, arXiv:0808.3676, preprint · Zbl 1225.05254
[84] Ito, T., Designs in a coset geometry: delsarte theory revisited, European J. combin., 25, 229-238, (2004) · Zbl 1033.05102
[85] Ito, T.; Tanabe, K.; Terwilliger, P., Some algebra related to \(P\)- and \(Q\)-polynomial association schemes, (), 167-192 · Zbl 0995.05148
[86] Ito, T.; Terwilliger, P., The \(q\)-tetrahedron algebra and its finite dimensional irreducible modules, Comm. algebra, 35, 3415-3439, (2007) · Zbl 1133.17011
[87] T. Ito, P. Terwilliger, Distance-regular graphs and the \(q\)-tetrahedron algebra, European J. Combin., arXiv:math/0608694, in press (doi:10.1016/j.ejc.2008.07.011) · Zbl 1193.17008
[88] T. Ito, P. Terwilliger, The Drinfel’d polynomial of a tridiagonal pair, arXiv:0805.1465, preprint · Zbl 1271.15003
[89] T. Ito, P. Terwilliger, Tridiagonal pairs of \(q\)-Racah type, arXiv:0807.0271, preprint · Zbl 1177.33021
[90] Jaeger, F.; Matsumoto, M.; Nomura, K., Bose – mesner algebras related to type II matrices and spin models, J. algebraic combin., 8, 39-72, (1998) · Zbl 0974.05084
[91] Jones, V.F.R., On knot invariants related to some statistical mechanical models, Pacific J. math., 137, 311-334, (1989) · Zbl 0695.46029
[92] Jurišić, A.; Koolen, J.H.; Terwilliger, P., Tight distance-regular graphs, J. algebraic combin., 12, 163-197, (2000) · Zbl 0959.05121
[93] Khosrovshahi, G.B.; Laue, R., \(t\)-designs with \(t \geqslant 3\), (), 79-101
[94] de Klerk, E.; Pasechnik, D.V., A note on the stability number of an orthogonality graph, European J. combin., 28, 1971-1979, (2007) · Zbl 1125.05053
[95] R. Koekoek, R.F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its \(q\)-analog, Report 98-17, Delft University of Technology, The Netherlands, 1998, Available at http://aw.twi.tudelft.nl/ koekoek/askey.html
[96] Komatsu, T., Tamely ramified Eisenstein fields with prime power discriminants, Kyushu J. math., 62, 1-13, (2008) · Zbl 1161.11033
[97] Koolen, J.H.; Moulton, V., There are finitely many triangle-free distance-regular graphs with degree 8, 9 or 10, J. algebraic combin., 19, 205-217, (2004) · Zbl 1047.05043
[98] Laurent, M., Strengthened semidefinite programming bounds for codes, Math. program. ser. B, 109, 239-261, (2007) · Zbl 1147.90034
[99] N. LeCompte, W.J. Martin, W. Owens, On the equivalence between real mutually unbiased bases and a certain class of association schemes, August 2008, preprint · Zbl 1195.81026
[100] Leonard, D.A., Orthogonal polynomials, duality and association schemes, SIAM J. math. anal., 13, 656-663, (1982) · Zbl 0495.33006
[101] Levenshtein, V.I., Split orthogonal arrays and maximum independent resilient systems of functions, Des. codes cryptogr., 12, 131-160, (1997) · Zbl 0935.94030
[102] Li, W.-C.W.; Meemark, Y., Ramanujan graphs on cosets of \(P G L_2(\mathbb{F}_q)\), Finite fields appl., 11, 511-543, (2005)
[103] van Lint, J.H., Introduction to coding theory, (1998), Springer-Verlag Berlin · Zbl 0485.94015
[104] van Lint, J.H.; Wilson, R.M., A course in combinatorics, (2001), Cambridge University Press Cambridge · Zbl 0980.05001
[105] Lovász, L., On the Shannon capacity of a graph, IEEE trans. inform. theory, 25, 1-7, (1979) · Zbl 0395.94021
[106] Lovász, L.; Schrijver, A., Cones of matrices and set-functions and 0-1 optimization, SIAM J. optim., 1, 166-190, (1991) · Zbl 0754.90039
[107] Macdonald, I.G., Symmetric functions and Hall polynomials, (1995), Oxford University Press New York · Zbl 0487.20007
[108] MacLean, M.S.; Terwilliger, P., The subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two, Discrete math., 308, 1230-1259, (2008) · Zbl 1136.05076
[109] MacWilliams, F.J.; Mallows, C.L.; Sloane, N.J.A., Generalizations of gleason’s theorem on weight enumerators of self-dual codes, IEEE trans. inform. theory, IT-18, 794-805, (1972) · Zbl 0248.94013
[110] MacWilliams, F.J.; Sloane, N.J.A., The theory of error-correcting codes, (1977), North-Holland Amsterdam · Zbl 0369.94008
[111] Martin, W.J., Mixed block designs, J. combin. des., 6, 151-163, (1998) · Zbl 0918.05017
[112] Martin, W.J., Designs in product association schemes, Des. codes cryptogr., 16, 271-289, (1999) · Zbl 0927.05082
[113] Martin, W.J., Minimum distance bounds for \(s\)-regular codes, Des. codes cryptogr., 21, 181-187, (2000) · Zbl 1014.94030
[114] Martin, W.J., Symmetric designs, sets with two intersection numbers and Krein parameters of incidence graphs, J. combin. math. combin. comput., 38, 185-196, (2001) · Zbl 0979.05012
[115] Martin, W.J., Design systems: combinatorial characterizations of delsarte \(\mathcal{T}\)-designs via partially ordered sets, (), 223-239 · Zbl 0977.05142
[116] W.J. Martin, Completely regular codes: A viewpoint and some problems, in: Proceedings of Com^{^{2}}MaC Workshop on Distance-Regular Graphs and Finite Geometry, Pusan, Korea, July 2004, pp. 43-56
[117] Martin, W.J., \((t, m, s)\)-nets, (), 639-643
[118] W.J. Martin, The biweight enumerator and the Terwilliger algebra of the hypercube (in preparation)
[119] Martin, W.J.; Muzychuk, M.; Williford, J., Imprimitive cometric association schemes: constructions and analysis, J. algebraic combin., 25, 399-415, (2007) · Zbl 1118.05100
[120] Martin, W.J.; Sagan, B.E., A new notion of transitivity for groups and sets of permutations, J. London math. soc., 73, 1-13, (2006) · Zbl 1089.05079
[121] Martin, W.J.; Stinson, D.R., Association schemes for ordered orthogonal arrays and \((T, M, S)\)-nets, Canad. J. math., 51, 326-346, (1999) · Zbl 0938.05018
[122] Martin, W.J.; Visentin, T.I., A dual plotkin bound for \((T, M, S)\)-nets, IEEE trans. inform. theory, 53, 411-415, (2007) · Zbl 1205.94130
[123] W.J. Martin, J.S. Williford, There are finitely many \(Q\)-polynomial association schemes with given first multiplicity at least three, European J. Combin., in press (doi:10.1016/j.ejc.2008.07.009) · Zbl 1169.05054
[124] McEliece, R.J.; Rodemich, E.R.; Rumsey, H.; Welch, L.R., New upper bounds on the rate of a code via the delsarte – macwilliams inequalities, IEEE trans. inform. theory, IT-23, 157-166, (1977) · Zbl 0361.94016
[125] Mizukawa, H., Zonal spherical functions on the complex reflection groups and \((n + 1, m + 1)\)-hypergeometric functions, Adv. math., 184, 1-17, (2004) · Zbl 1054.33011
[126] Mizukawa, H.; Tanaka, H., \((n + 1, m + 1)\)-hypergeometric functions associated to character algebras, Proc. amer. math. soc., 132, 2613-2618, (2004) · Zbl 1059.33020
[127] Mounits, B.; Etzion, T.; Litsyn, S., Improved upper bounds on sizes of codes, IEEE trans. inform. theory, 48, 880-886, (2002) · Zbl 1061.94083
[128] Mounits, B.; Etzion, T.; Litsyn, S., New upper bounds on codes via association schemes and linear programming, Adv. math. commun., 1, 173-195, (2007) · Zbl 1207.94087
[129] Munemasa, A., An analogue of \(t\)-designs in the association schemes of alternating bilinear forms, Graphs combin., 2, 259-267, (1986) · Zbl 0652.05009
[130] Munemasa, A., Splitting fields of association schemes, J. combin. theory ser. A, 57, 157-161, (1991) · Zbl 0754.05077
[131] Munemasa, A., Spherical designs, (), 617-622 · Zbl 0198.56203
[132] Musin, O.R., The kissing problem in three dimensions, Discrete comput. geom., 35, 375-384, (2006) · Zbl 1093.52011
[133] Musin, O.R., The kissing number in four dimensions, Ann. of math., 168, 2, 1-32, (2008) · Zbl 1169.52008
[134] M. Muzychuk, \(V\)-rings of permutation groups with invariant metric, Ph.D. Thesis, Kiev State University, 1988
[135] M. Muzychuk, A wedge product of association schemes, European J. Combin., in press (doi:10.1016/j.ejc.2008.07.008) · Zbl 1207.05224
[136] Niederreiter, H., Point sets and sequences with small discrepancy, Monatsh. math., 104, 273-337, (1987) · Zbl 0626.10045
[137] Pascasio, A.A., On the multiplicities of the primitive idempotents of a \(Q\)-polynomial distance-regular graph, European J. combin., 23, 1073-1078, (2002) · Zbl 1017.05107
[138] Ponomarenko, I.; Muzychuk, M., Schur rings, European J. combin., 30, 6, 1526-1539, (2009) · Zbl 1195.20003
[139] Rosenbloom, M.Y.; Tsfasman, M.A., Codes for the \(m\)-metric, Problems inform. transmission, 33, 45-52, (1997) · Zbl 1037.94545
[140] Sagan, B.E.; Caughman, J.S., The multiplicities of a dual-thin \(Q\)-polynomial association scheme, Electron. J. combin., 8, (2001), N4 · Zbl 0973.05081
[141] Samorodnitsky, A., On the optimum of delsarte’s linear program, J. combin. theory ser. A, 96, 261-287, (2001) · Zbl 0991.94060
[142] Schrijver, A., A comparison of the delsarte and lovász bounds, IEEE trans. inform. theory, 25, 425-429, (1979) · Zbl 0444.94009
[143] Schrijver, A., New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE trans. inform. theory, 51, 2859-2866, (2005) · Zbl 1298.94152
[144] Sloane, N.J.A.; Stufken, J., A linear programming bound for orthogonal arrays with mixed levels, J. statist. plann. inference, 56, 295-305, (1996) · Zbl 0873.05023
[145] S.-Y. Song, H. Tanaka, Group-case commutative association schemes and their character tables, in: Algebraic Combinatorics, An International Conference in Honor of Eiichi Bannai’s 60th Birthday, Sendai, Japan, June 2006, pp. 204-213, arXiv:0809.0748
[146] Stanton, D., Orthogonal polynomials and Chevalley groups, (), 87-128
[147] Stanton, D., Harmonics on posets, J. combin. theory ser. A, 40, 136-149, (1985) · Zbl 0573.06001
[148] Stanton, D., \(t\)-designs in classical association schemes, Graphs combin., 2, 283-286, (1986) · Zbl 0651.05016
[149] Suzuki, H., Imprimitive \(Q\)-polynomial association schemes, J. algebraic combin., 7, 165-180, (1998) · Zbl 0974.05083
[150] Suzuki, H., Association schemes with multiple \(Q\)-polynomial structures, J. algebraic combin., 7, 181-196, (1998) · Zbl 0974.05082
[151] Suzuki, H., The Terwilliger algebra associated with a set of vertices in a distance-regular graph, J. algebraic combin., 22, 5-38, (2005)
[152] Tamaschke, O., Zur theorie der permutatationsgruppen mit regulärer untergruppe I, Math. Z., 80, 328-354, (1962-1963) · Zbl 0108.02803
[153] Tanabe, K., The irreducible modules of the Terwilliger algebras of Doob schemes, J. algebraic combin., 6, 173-195, (1997) · Zbl 0868.05056
[154] Tanabe, K., A new proof of the assmus – mattson theorem for non-binary codes, Des. codes cryptogr., 22, 149-155, (2001) · Zbl 0987.94040
[155] H. Tanaka, On some relationships among the association schemes of the orthogonal groups acting on hyperplanes, Master Thesis, Kyushu University, 2001
[156] Tanaka, H., A four-class subscheme of the association scheme coming from the action of \(P G L(2, 4^f)\), European J. combin., 23, 121-129, (2002) · Zbl 0990.05142
[157] Tanaka, H., Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. combin. theory ser. A, 113, 903-910, (2006) · Zbl 1092.05075
[158] H. Tanaka, New proofs of the Assmus-Mattson theorem based on the Terwilliger algebra, European J. Combin., arXiv:math/0612740 in press (doi:10.1016/j.ejc.2008.07.018) · Zbl 1220.94052
[159] H. Tanaka, A bilinear form relating two Leonard systems, arXiv:0807.0385 preprint · Zbl 1228.05320
[160] H. Tarnanen, On extensions of association schemes, in: H. Laakso, A. Salomaa (Eds.), The Very Knowledge of Coding, University of Turku, Turku, 1987, pp. 128-142
[161] Tarnanen, H., Upper bounds on permutation codes via linear programming, European J. combin., 20, 101-114, (1999) · Zbl 0915.94010
[162] Terras, A., Fourier analysis on finite groups and applications, (1999), Cambridge University Press Cambridge · Zbl 0928.43001
[163] Terwilliger, P., The subconstituent algebra of an association scheme I, J. algebraic combin., 1, 363-388, (1992) · Zbl 0785.05089
[164] Terwilliger, P., The subconstituent algebra of an association scheme II, J. algebraic combin., 2, 73-103, (1993) · Zbl 0785.05090
[165] Terwilliger, P., The subconstituent algebra of an association scheme III, J. algebraic combin., 2, 177-210, (1993) · Zbl 0785.05091
[166] Terwilliger, P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear algebra appl., 330, 149-203, (2001) · Zbl 0980.05054
[167] Terwilliger, P., The subconstituent algebra of a distance-regular graph; thin modules with endpoint one, Linear algebra appl., 356, 157-187, (2002) · Zbl 1011.05066
[168] Terwilliger, P., Introduction to leonard pairs, J. comput. appl. math., 153, 463-475, (2003) · Zbl 1035.05103
[169] Terwilliger, P., Leonard pairs and the \(q\)-racah polynomials, Linear algebra appl., 387, 235-276, (2004) · Zbl 1075.05090
[170] Terwilliger, P., The displacement and split decompositions for a \(Q\)-polynomial distance-regular graph, Graphs combin., 21, 263-276, (2005) · Zbl 1065.05097
[171] Terwilliger, P., An algebraic approach to the Askey scheme of orthogonal polynomials, (), 255-330 · Zbl 1102.33011
[172] Todd, M.J., Semidefinite optimization, Acta numer., 10, 515-560, (2001) · Zbl 1105.65334
[173] Vallentin, F., Symmetry in semidefinite programs, Linear algebra appl., 430, 360-369, (2009) · Zbl 1165.90017
[174] Vinh, L.A., Explicit Ramsey graphs and Erdős distance problems over finite euclidean and non-Euclidean spaces, Electron. J. combin., 15, (2008), R5
[175] Wielandt, H., Finite permutation groups, (1964), Academic Press New York · Zbl 0138.02501
[176] Wilson, R.M., The exact bound in the erdős – ko – rado theorem, Combinatorica, 4, 247-257, (1984) · Zbl 0556.05039
[177] Zieschang, P.-H., Theory of association schemes, (2005), Springer-Verlag Berlin · Zbl 1079.05099
[178] Zieschang, P.-H., Trends and lines of development in scheme theory, European J. combin., 30, 6, 1540-1563, (2009) · Zbl 1228.05322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.