×

zbMATH — the first resource for mathematics

Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. (English) Zbl 1228.76088
Summary: Numerical studies of stabilized finite element methods for solving scalar time-dependent convection-diffusion-reaction equations with small diffusion are presented in this paper. These studies include the streamline-upwind Petrov-Galerkin (SUPG) method with different parameters, various spurious oscillations at layers diminishing (SOLD) methods, a local projection stabilization (LPS) scheme based on enrichment and two finite element method flux corrected transport (FEM-FCT) methods. The focus of the evaluation of the numerical results is on the reduction of spurious oscillations.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
76V05 Reaction effects in flows
Software:
MooNMD; UMFPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almeida, R.C.; Silva, R.S., A stable petrov – galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 140, 291-304, (1997) · Zbl 0899.76258
[2] Bazilevs, Y.; Calo, V.M.; Tezduyar, T.E.; Hughes, T.J.R., \(\mathit{YZ} \beta\) discontinuity capturing for advection-dominated process with applications to arterial drug delivery, Int. J. numer. methods fluids, 54, 593-608, (2007) · Zbl 1207.76049
[3] Becker, R.; Braack, M., A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo, 28, 173-199, (2001) · Zbl 1008.76036
[4] Bochev, P.B.; Gunzburger, M.D.; Shadid, J.N., Stability of the SUPG finite element method for transient advection – diffusion problems, Comput. methods appl. mech. engrg., 193, 2301-2323, (2004) · Zbl 1067.76563
[5] Braack, M.; Burman, E., Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. numer. anal., 43, 2544-2566, (2006) · Zbl 1109.35086
[6] Braack, M.; Burman, E.; John, V.; Lube, G., Stabilized finite element methods for the generalized Oseen problem, Comput. methods appl. mech. engrg., 196, 853-866, (2007) · Zbl 1120.76322
[7] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[8] Burman, E.; Ern, A., Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection – diffusion – reaction equation, Comput. methods appl. mech. engrg., 191, 3833-3855, (2002) · Zbl 1101.76354
[9] E. Burman, A. Ern, The discrete maximum principle for stabilized finite element methods, in: F. Brezzi, A. Buffa, S. Corsaro, A. Murli, Numerical mathematics and advanced applications, Proceedings of the Fourth European Conference (ENUMATH 2001), Springer, Italia, Milan, 2003, pp. 557-566.
[10] Burman, E.; Ern, A., Stabilized Galerkin approximation of convection – diffusion – reaction equations: discrete maximum principle and convergence, Math. comput., 74, 1637-1652, (2005) · Zbl 1078.65088
[11] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection – diffusion – reaction problems, Comput. methods appl. mech. engrg., 193, 1437-1453, (2004) · Zbl 1085.76033
[12] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Publishing Company Amsterdam - New York - Oxford · Zbl 0445.73043
[13] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection – diffusion equation, Comput. methods appl. mech. engrg., 110, 325-342, (1993) · Zbl 0844.76048
[14] Codina, R., Comparison of some finite element methods for solving the diffusion – convection – reaction equation, Comput. methods appl. mech. engrg., 156, 185-210, (1998) · Zbl 0959.76040
[15] Codina, R., On stabilized finite element methods for linear systems of convection – diffusion – reaction equations, Comput. methods appl. mech. engrg., 188, 61-82, (2000) · Zbl 0973.76041
[16] Codina, R.; Blasco, J., Analysis of stabilized finite element approximation of the transient convection – diffusion – reaction equation using orthogonal subscales, Comput. vis. sci., 4, 167-174, (2002) · Zbl 0995.65101
[17] Davis, T.A., Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method, ACM trans. math. software, 30, 196-199, (2004) · Zbl 1072.65037
[18] do Carmo, E.G.D.; Alvarez, G.B., A new stabilized finite element formulation for scalar convection – diffusion problems: the streamline and approximate upwind/petrov – galerkin method, Comput. methods appl. mech. engrg., 193, 1437-1453, (2004)
[19] do Carmo, E.G.D.; Galeão, A.C., Feedback petrov – galerkin methods for convection-dominated problems, Comput. methods appl. mech. engrg., 88, 1-16, (1991) · Zbl 0753.76093
[20] Franca, L.P.; Valentin, F., On an improved unusual stabilized finite element method for the advective – reactive – diffusive equation, Comput. methods appl. mech. engrg., 190, 1785-1800, (2000) · Zbl 0976.76038
[21] Galeão, A.C.; Almeida, R.C.; Malta, S.M.C.; Loula, A.F.D., Finite element analysis of convection dominated reaction – diffusion problems, Appl. numer. math., 48, 205-222, (2004) · Zbl 1055.65125
[22] Galeão, A.C.; do Carmo, E.G.D., A consistent approximate upwind petrov – galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[23] S. Ganesan, L. Tobiska, Stabilization by local projection. convection – diffusion and incompressible flow problems. Preprint 46, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2007. · Zbl 1203.76138
[24] Gravemeier, V.; Wall, W.A., A space-time formulation and improved spatial reconstruction for the “divide-and-conquer” multiscale method, Comput. methods appl. mech. engrg., 197, 678-692, (2008) · Zbl 1169.76390
[25] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2an, 33, 1293-1316, (1999) · Zbl 0946.65112
[26] Hauke, G., A simple subgrid scale stabilized method for the advection – diffusion – reaction equation, Comput. methods appl. mech. engrg., 191, 2925-2947, (2002) · Zbl 1005.76057
[27] Hauke, G.; Doweidar, M.H., Fourier analysis of semi-discrete and space – time stabilized methods for the advective – diffusive – reactive equation: II. SGS, Comput. methods appl. mech. engrg., 194, 691-725, (2005) · Zbl 1112.76390
[28] Hughes, T.J.; Mazzei, L.; Jansen, K.E., Large eddy simulation and the variational multiscale method, Comput. visual. sci., 3, 47-59, (2000) · Zbl 0998.76040
[29] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[30] Hughes, T.J.R.; Brooks, A.N., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[31] John, V., On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows, Appl. math., 51, 321-353, (2006) · Zbl 1164.76348
[32] John, V.; Kaya, S., A finite element variational multiscale method for the navier – stokes equations, SIAM J. sci. comput., 26, 1485-1503, (2005) · Zbl 1073.76054
[33] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-dominated convection – diffusion equations, Comput. meth. appl. math. engrg., 195, 4594-4603, (2006) · Zbl 1124.76028
[34] John, V.; Knobloch, P., A comparison of spurious oscillations at layers diminishing (sold) methods for convection – diffusion equations: part I - a review, Comput. methods appl. mech. engrg., 196, 2197-2215, (2007) · Zbl 1173.76342
[35] John, V.; Knobloch, P., On the performance of SOLD methods for convection – diffusion problems with interior layers, Int. J. comput. sci. math., 1, 245-258, (2007) · Zbl 1185.65212
[36] John, V.; Knobloch, P., A comparison of spurious oscillations at layers diminishing (sold) methods for convection – diffusion equations: part II - analysis for \(P_1\) and \(Q_1\) finite elements, Comput. methods appl. mech. engrg., 197, 1997-2014, (2008) · Zbl 1194.76122
[37] John, V.; Matthies, G., Moonmd – a program package based on mapped finite element methods, Comput. visual. sci., 6, 163-170, (2004) · Zbl 1061.65124
[38] John, V.; Maubach, J.M.; Tobiska, L., Nonconforming streamline-diffusion-finite-element-methods for convection – diffusion problems, Numer. math., 78, 165-188, (1997) · Zbl 0898.65068
[39] V. John, M. Roland, T. Mitkova, K. Sundmacher, L. Tobiska, A. Voigt, Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Engrg. Sci., in press.
[40] V. John, E. Schmeyer, On finite element methods for 3d time-dependent convection – diffusion – reaction equations with small diffusion. Preprint 219, Universität des Saarlandes, Fachrichtung 6.1 - Mathematik, 2008. submitted to the Proceedings of the Conference BAIL 2008, Limerick. · Zbl 1228.76088
[41] Johnson, C.; Schatz, A.H.; Wahlbin, L.B., Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. comput., 49, 25-38, (1987) · Zbl 0629.65111
[42] Knopp, T.; Lube, G.; Rapin, G., Stabilized finite element methods with shock capturing for advection – diffusion problems, Comput. methods appl. mech. engrg., 191, 2997-3013, (2002) · Zbl 1001.76058
[43] D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, Ergebnisberichte Angew. Math. 358, University of Dortmund, 2008. · Zbl 1275.76171
[44] Kuzmin, D.; Möller, M., Algebraic flux correction I. scalar conservation laws, (), 155-206 · Zbl 1094.76040
[45] Kuzmin, D.; Möller, M.; Turek, S., High-resolution FEM-FCT schemes for multidimensional conservation laws, Comput. methods appl. mech. engrg., 193, 4915-4946, (2004) · Zbl 1112.76393
[46] Kuzmin, D.; Turek, S., Flux correction tools for finite elements, J. comput. phys., 175, 525-558, (2002) · Zbl 1028.76023
[47] LeVeque, R.J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627-665, (1996) · Zbl 0852.76057
[48] Löhner, R.; Morgan, K.; Peraire, J.; Vahdati, M., Finite element flux-corrected transport (FEM-FCT) for the Euler and navier – stokes equations, Int. J. numer. methods fluids, 7, 1093-1109, (1987) · Zbl 0633.76070
[49] Lube, G.; Rapin, G., Residual-based stabilized higher-order FEM for advection-dominated problems, Comput. methods appl. mech. engrg., 195, 4124-4138, (2006) · Zbl 1125.76042
[50] G. Matthies, P. Skrzypacz, L. Tobiska, Stabilisation of local projection type applied to convection – diffusion problems with mixed boundary conditions. Preprint 44, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2007. · Zbl 1171.65074
[51] Matthies, G.; Skrzypacz, P.; Tobiska, L., A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2an, 41, 713-742, (2007) · Zbl 1188.76226
[52] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical methods for singularly perturbed differential equations, (1996), Springer
[53] Stynes, M.; Tobiska, L., Necessary \(L^2\)-uniform convergence conditions for difference schemes for two-dimensional convection – diffusion problems, Comput. math. appl., 29, 45-53, (1995) · Zbl 0822.65077
[54] Tezduyar, T.E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (), chapter 17 · Zbl 0848.76036
[55] Tezduyar, T.E.; Park, Y.J., Discontinuity-capturing finite element formulations for nonlinear convection – diffusion – reaction equations, Comput. methods appl. mech. engrg., 59, 307-325, (1986) · Zbl 0593.76096
[56] Zalesak, S.T., Fully multi-dimensional flux corrected transport algorithms for fluid flow, J. comput. phys., 31, 335-362, (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.