Duha, S. S.; Mamun, A. A. Dust-ion-acoustic shock waves due to dust charge fluctuation. (English) Zbl 1228.76198 Phys. Lett., A 373, No. 14, 1287-1289 (2009). Summary: A dusty plasma system containing Boltzmann electrons, mobile ions and charge fluctuating stationary dust has been considered. The nonlinear propagation of the dust-ion-acoustic waves in such a dusty plasma has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and is responsible for the formation of the dust-ion-acoustic shock waves. The basic features of such dust-ion-acoustic shock waves have been identified. The implications of our results in space and laboratory dusty plasmas are discussed. Cited in 3 Documents MSC: 76X05 Ionized gas flow in electromagnetic fields; plasmic flow 76T15 Dusty-gas two-phase flows 76Q05 Hydro- and aero-acoustics 76L05 Shock waves and blast waves in fluid mechanics PDF BibTeX XML Cite \textit{S. S. Duha} and \textit{A. A. Mamun}, Phys. Lett., A 373, No. 14, 1287--1289 (2009; Zbl 1228.76198) Full Text: DOI OpenURL References: [1] Shukla, P.K.; Silin, V.P., Phys. scr., 45, 508, (1992) [2] Sheridan, T.E.; Yi, S.; Longreen, K.E., Phys. plasmas, 5, 3165, (1998) [3] Longreen, K.E., Plasma phys., 25, 943, (1983) [4] Longreen, K.E., Opt. quantum electron., 30, 615, (1998) [5] Barkan, A.; D’Angelo, N.; Merlino, R.L., Planet. space sci., 44, 239, (1996) [6] Nakamura, Y.; Bailung, H.; Shukla, P.K., Phys. rev. lett., 83, 1602, (1999) [7] Shukla, P.K., Phys. plasmas, 8, 1791, (2001) [8] Shukla, P.K.; Mamun, A.A., Introduction to dusty plasma physics, (2002), Institute of Physics Bristol [9] Bharuthram, R.; Shukla, P.K., Planet. space sci., 40, 973, (1992) [10] Shukla, P.K., Phys. plasmas, 7, 1044, (2000) [11] Luo, Q.Z.; D’Angelo, N.; Merlino, R.L.; Luo, Q.Z.; D’Angelo, N.; Merlino, R.L., Phys. plasmas, Phys. plasmas, 7, 2370, (2000) [12] Nakamura, Y.; Sharma, A., Phys. plasmas, 8, 3921, (2001) [13] Popel, S.I.; Yu, M.Y., Contr. plasma phys., 35, 103, (1995) [14] Mamun, A.A.; Shukla, P.K., Phys. plasmas, 9, 4, (2002) [15] Mamun, A.A.; Shukla, P.K., Phys. scr. T, 98, 107, (2002) [16] Ghosh, S.; Sarkar, S.; Khan, M.; Gupta, M.R., Phys. lett. A, 274, 162, (2000) [17] Ghosh, S.; Sarkar, S.; Khan, M.; Gupta, M.R., Phys. plasmas, 7, 3594, (2000) [18] Ghosh, S.; Chaudhuri, T.K.; Sarkar, S.; Khan, M.; Gupta, M.R., Phys. rev. E, 65, 037401, (2002) [19] Washimi, H.; Taniuti, T., Phys. rev. lett., 17, 996, (1966) [20] Talukdar, M.; Sarma, J., Phys. plasmas, 4, 4236, (1997) [21] Mamun, A.A., Phys. lett. A, 372, 4610, (2008) [22] Merlino, R.L.; Goree, J., Phys. today, 57, 32, (2004) [23] Karpman, V.I., Nonlinear waves in dispersive media, (1975), Pergamon Press Oxford [24] Hasegawa, A., Plasma instabilities and nonlinear effects, (1975), Springer-Verlag Berlin [25] Popel, S.I.; Losseva, T.V.; Merlino, R.L.; Andreev, S.N., Phys. plasmas, 12, 054501, (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.