High-velocity estimates for the scattering operator and Aharonov-Bohm effect in three dimensions. (English) Zbl 1228.81262

Summary: We obtain high-velocity estimates with error bounds for the scattering operator of the Schrödinger equation in three dimensions with electromagnetic potentials in the exterior of bounded obstacles that are handlebodies. A particular case is a finite number of tori. We prove our results with time-dependent methods. We consider high-velocity estimates where the direction of the velocity of the incoming electrons is kept fixed as its absolute value goes to infinity. In the case of one torus our results give a rigorous proof that quantum mechanics predicts the interference patterns observed in the fundamental experiments of Tonomura et al. that gave conclusive evidence of the existence of the Aharonov-Bohm effect using a toroidal magnet. We give a method for the reconstruction of the flux of the magnetic field over a cross-section of the torus modulo \(2\pi \). Equivalently, we determine modulo \(2\pi \) the difference in phase for two electrons that travel to infinity, when one goes inside the hole and the other outside it. For this purpose we only need the high-velocity limit of the scattering operator for one direction of the velocity of the incoming electrons. When there are several tori-or more generally handlebodies-the information that we obtain in the fluxes, and on the difference of phases, depends on the relative position of the tori and on the direction of the velocities when we take the high-velocity limit of the incoming electrons. For some locations of the tori we can determine all the fluxes modulo \(2\pi \) by taking the high-velocity limit in only one direction. We also give a method for the unique reconstruction of the electric potential and the magnetic field outside the handlebodies from the high-velocity limit of the scattering operator.


81U20 \(S\)-matrix theory, etc. in quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
Full Text: DOI arXiv


[1] Adams R.A., Fournier J.J.F.: Sobolev Spaces. Amsterdam Academic Press, Oxford (2003) · Zbl 1098.46001
[2] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Princeton, NJ: D. Van Nostrand, 1965 · Zbl 0142.37401
[3] Aharonov Y., Bohm D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959) · Zbl 0099.43102
[4] Arians S.: Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38, 2761–2773 (1997) · Zbl 0885.34066
[5] Arians, S.:Inverse Streutheorie für die Schrödinger Gleichung mit Magnet Felder. Dissertation RWTH-Aachen, Berlin, Logos, 1997 · Zbl 0885.34066
[6] Arians S.: Geometric approach to inverse scattering for hydrogen-like systems in a homogeneous magnetic field. J. Math. Phys. 39, 1730–1743 (1998) · Zbl 1042.81583
[7] Bredon G.E.: Topology and Geometry. Springer-Verlag, New York (1993) · Zbl 0791.55001
[8] de Rham G.: Differentiable Manifolds. Springer-Verlag, Berlin (1984) · Zbl 0534.58003
[9] Ehrenberg W., Siday R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. London B 62, 8–21 (1949) · Zbl 0032.23301
[10] Eskin G.: Inverse boundary value problems and the Aharonov-Bohm effect. Inverse Problems 19, 49–62 (2003) · Zbl 1020.35115
[11] Eskin G.: Inverse boundary value problems in domains with several obstacles. Inverse Problems 20, 1497–1516 (2004) · Zbl 1074.35086
[12] Eskin, G.: Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect. http://arXiv.org/list/math.AP/0611342v1 , 2006 · Zbl 1153.81355
[13] Eskin, G.: Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach. http://arXiv.org/abs/0707.2835v2[math-ph] , 2007 · Zbl 1193.58014
[14] Enss V., Weder R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36, 3902–3921 (1995) · Zbl 0849.35094
[15] Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, Providence, RI: Amer. Math. Soc., 1999
[16] Greenberg M.J., Harper J.R.: Algebraic Topology, A First Course. Addison-Wesley, New York (1981) · Zbl 0498.55001
[17] Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[18] Helgason S.: Groups and Geometric Analysis. Academic Press, Orlando (1984) · Zbl 0543.58001
[19] Helgason, S.: The Radon Transform. Progress in Mathematics Vol 5, 2nd edn, Berlin: Birkäuser, 1999 · Zbl 0932.43011
[20] Jung, W.: Der geometrische Ansatz zur inversen Streutheorie bei der Dirac-Gleichung. Diplomarbeit RWTH-Aachen, 1996
[21] Jung W.: Geometrical approach to inverse scattering for the Dirac equation. J. Math. Phys. 38, 39–48 (1997) · Zbl 0890.47007
[22] Jung, W.: Gauge transformations and inverse quantum scattering with medium-range magnetic fields. Math. Phys. Electron. J. 11, paper 5 (2005), 32 pp · Zbl 1082.81084
[23] Kato T.: Perturbation Theory for Linear Operators. Second Edition. Springer-Verlag, Berlin (1976) · Zbl 0342.47009
[24] Katchalov A., Kurylev Ya.: Multidimensional inverse problem with incomplete boundary spectral data. Comm. Part. Differ. Eqs. 23, 55–95 (1998) · Zbl 0904.65114
[25] Kurylev, Y., Lassas, M.: Inverse problems and index formulae for Dirac operators. http://arXiv.org/list/math.AP/0501049v2 , 2006 · Zbl 1163.35041
[26] Martensen, E.: Potentialtheorie. Stuttgart: B.G. Tubner, 1968
[27] Natterer F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart (1986) · Zbl 0617.92001
[28] Nicoleau F.: An inverse scattering problem with the Aharonov-Bohm effect. J. Math. Phys 41, 5223–5237 (2000) · Zbl 0981.81069
[29] Olariu S., Popescu I.I.: The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339–436 (1985)
[30] Peshkin, M., Tonomura, A.: The Aharonov-Bohm Effect. Lecture Notes in Phys. 340, Berlin: Springer-Verlag, 1989
[31] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. New York: Academic Press, 1975 · Zbl 0308.47002
[32] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory. New York: Academic Press, 1979 · Zbl 0405.47007
[33] Roux Ph.: Scattering by a toroidal coil. J. Phys. A: Math. Gen. 36, 5293–5304 (2003) · Zbl 1044.81121
[34] Roux Ph., Yafaev D.: On the mathematical theory of the Aharonov-Bohm effect. J. Phys. A: Math. Gen. 35, 7481–7492 (2002) · Zbl 1066.81550
[35] Schwarz, G.: Hodge Decomposition- A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics 1607, Berlin: Springer, 1995 · Zbl 0828.58002
[36] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdan (1978) · Zbl 0387.46032
[37] Tonomura A., Matsuda T., Suzuki R., Fukuhara A., Osakabe N., Umezaki H., Endo J., Shinagawa K., Sugita Y., Fujiwara H.: Phys. Rev. Lett. 48, 1443–1446 (1982)
[38] Tonomura A., Osakabe N., Matsuda T., Kawasaki T., Endo J., Yano S., Yamada H.: Phys. Rev. Lett. 56, 792–795 (1986)
[39] Neudert M., von Wahl W.: Asymptotic behaviour of the div-curl problem in exterior domains. Adv. Differ. Eqs. 6, 1347–1376 (2001) · Zbl 1016.35068
[40] Weder R.: The Aharonov-Bohm effect and time-dependent inverse scattering theory. Inverse Problems 18, 1041–1056 (2002) · Zbl 1024.81053
[41] Warner F.W.: Foundations of Differentiable Manifolds. Springer-Verlag, Berlin (1983) · Zbl 0516.58001
[42] Yafaev D.R.: Scattering matrix for magnetic potentials with Coulomb decay at infinity. Int. Eqs. Opr Theory 47, 217–249 (2003) · Zbl 1073.47506
[43] Yafaev D.R.: Scattering by magnetic fields. St. Petersburg Math. J. 17, 875–895 (2006) · Zbl 1110.47065
[44] Wu T.T., Yang C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D (3) 12, 3845–3857 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.