×

Some new extragradient-like methods for generalized equilibrium problems, fixed point problems and variational inequality problems. (English) Zbl 1228.90128

Summary: We introduce two iterative schemes by extragradient-like methods for finding a common element of the set of solutions of a generalized equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping in a Hilbert space. We obtain a strong convergence theorem and a weak convergence theorem for the sequences generated by these processes. Based on these two results, we also get some new and interesting results. The results in this paper generalize and extend some well-known strong convergence theorems and weak convergence theorems in the literature.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C48 Programming in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1287/moor.26.2.248.10558 · Zbl 1082.65058
[2] DOI: 10.1090/S0002-9939-03-07050-3 · Zbl 1040.41016
[3] Blum E., Math. Stud. 63 pp 123– (1994)
[4] DOI: 10.1016/0022-247X(67)90085-6 · Zbl 0153.45701
[5] DOI: 10.1137/S0363012902415487 · Zbl 1076.49003
[6] Ceng L.-C., Appl. Math. Comput. (2007)
[7] DOI: 10.1137/S036301299732626X · Zbl 1032.90023
[8] Combettes P. L., J. Non-linear Convex Anal. 6 pp 117– (2005)
[9] DOI: 10.1007/BF02614504 · Zbl 0890.90150
[10] DOI: 10.1081/NFA-120034119 · Zbl 1062.90066
[11] DOI: 10.1017/CBO9780511526152
[12] DOI: 10.1016/j.jmaa.2004.04.068 · Zbl 1068.65087
[13] DOI: 10.1023/A:1023652406878 · Zbl 1033.65037
[14] Korpelevich G. M., Matecon 12 pp 747– (1976)
[15] DOI: 10.1007/s10957-005-7564-z · Zbl 1130.90055
[16] DOI: 10.1016/S0022-247X(02)00458-4 · Zbl 1035.47048
[17] DOI: 10.1090/S0002-9904-1967-11761-0 · Zbl 0179.19902
[18] DOI: 10.1016/j.amc.2007.07.075 · Zbl 1154.47053
[19] DOI: 10.1090/S0002-9947-1970-0282272-5
[20] DOI: 10.1017/S0004972700028884 · Zbl 0709.47051
[21] Shimoji K., Taiwanese J. Math. 5 pp 387– (2001)
[22] DOI: 10.1007/s10107-002-0369-z · Zbl 1042.49008
[23] DOI: 10.1287/moor.25.2.214.12222 · Zbl 0980.90097
[24] Solodov M. V., Math. Program. 87 pp 189C202– (2000)
[25] DOI: 10.1007/s10957-007-9187-z · Zbl 1147.47052
[26] DOI: 10.1016/S0895-7177(00)00218-1 · Zbl 0971.47040
[27] DOI: 10.1016/j.jmaa.2006.08.036 · Zbl 1122.47056
[28] Takahashi S., Nonlinear Anal. (2008)
[29] DOI: 10.1023/A:1025407607560 · Zbl 1055.47052
[30] DOI: 10.1016/j.amc.2006.08.062 · Zbl 1121.65064
[31] Yao Y., Fixed Point Theory and Applications Volume (2007)
[32] Zeng L. C., Taiwan. J. Math. 10 pp 1293– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.