×

zbMATH — the first resource for mathematics

Improved result on stability analysis of discrete stochastic neural networks with time delay. (English) Zbl 1228.92004
Summary: This Letter investigates the problem of exponential stability of discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of a linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. A numerical example is given to illustrate the effectiveness and the benefits of the proposed method.

MSC:
92B20 Neural networks for/in biological studies, artificial life and related topics
34K20 Stability theory of functional-differential equations
15A45 Miscellaneous inequalities involving matrices
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arik, S., IEEE trans. circuits syst. I fund. theory appl., 47, 568, (2000)
[2] Hale, J., Theory of functional differential equations, (1977), Springer-Verlag New York
[3] ()
[4] He, Y.; Wu, M.; She, J., IEEE trans. neural networks, 17, 250, (2006)
[5] He, Y.; Liu, G.; Rees, D., IEEE trans. neural networks, 18, 310, (2007)
[6] Huang, H.; Cao, J.; Wang, J., Phys. lett. A, 298, 393, (2002)
[7] Yue, D.; Zhang, Y.; Tian, E., Int. J. comput. math., 85, 1265, (2008)
[8] Xu, S.; Lam, J., Neural networks, 19, 76, (2006)
[9] Cao, J.; Wang, J., IEEE trans. circuits syst. I reg. papers, 52, 417, (2005)
[10] Cao, J.; Yuan, K.; Li, H., IEEE trans. neural networks, 17, 1646, (2006)
[11] Kwon, O.M.; Park, J.H., Phys. lett. A, 373, 53, (2009)
[12] Kwon, O.M.; Park, J.H., Appl. math. comput., 203, 813, (2008)
[13] Song, Q., Neurocomputing, 71, 2823, (2008)
[14] Song, Q.; Cao, J., IEEE trans. syst. man cybern. part B cybern., 37, 733, (2007)
[15] Song, Q.; Wang, Z., Phys. lett. A, 368, 134, (2007)
[16] Chen, W.; Lu, X.; Liang, D., Phys. lett. A, 358, 186, (2006)
[17] Wu, M.; Liu, F.; Shi, P.; He, Y.; Yokoyama, R., IEEE trans. circuits syst. II express briefs, 55, 690, (2008)
[18] Zhao, Y.; Gao, H.; Mou, S., Neurocomputing, 71, 2848, (2008)
[19] Mou, S.; Gao, H.; Lam, J.; Qiang, W., IEEE trans. neural networks, 19, 532, (2008)
[20] Liu, Y.; Wang, Z.; Liu, X., Neural networks, 19, 667, (2006)
[21] Wang, Z.; Shu, H.; Liu, Y.; Ho, D.W.C.; Liu, X., Chaos solitons fractals, 30, 886, (2006)
[22] Xu, S.; Lam, J.; Ho, D.W.C., IEEE trans. circuits syst. II express briefs, 53, 230, (2006)
[23] Chen, W.; Lu, X.M., Phys. lett. A, 351, 53, (2006)
[24] Liu, Y.; Wang, Z.; Serrano, A.; Liu, X., Phys. lett. A, 362, 480, (2007)
[25] Zhang, B.; Xu, S.; Zou, Y., Neurocomputing, 72, 321, (2008)
[26] Wang, Z.; Liu, Y.; Fraser, K.; Liu, X., Phys. lett. A, 354, 288, (2006)
[27] Wang, Z.; Liu, Y.; Li, M.; Liu, X., IEEE trans. neural networks, 17, 814, (2006)
[28] Li, H.; Chen, B.; Zhou, Q.; Fang, S., Phys. lett. A, 372, 3385, (2008)
[29] Liu, Y.; Wang, Z.; Liu, X., Nonlinear dyn., 54, 199, (2008)
[30] Rakkiyappan, R.; Balasubramaniam, R.; Lakshmanan, S., Phys. lett. A, 372, 5290, (2008)
[31] Shu, Z.; Lam, J., Neurocomputing, 71, 2950, (2008)
[32] Su, W.; Chen, Y., Commun. nonlinear sci. numer. simul., 14, 520, (2009)
[33] Wan, L.; Zhou, Q.; Sun, J., Int. J. bifur. chaos, 17, 3219, (2007)
[34] Wang, Z.; Fang, J.; Liu, X., Chaos solitons fractals, 36, 388, (2008)
[35] Liu, Y.; Wang, Z.; Liu, X., Neurocomputing, 71, 823, (2008)
[36] Song, Q.; Liang, J.; Wang, Z., Neurocomputing, 72, 1782, (2009)
[37] Luo, M.; Zhong, S.; Wang, R.; Kang, W., Appl. math. comput., 209, 305, (2008)
[38] He, Y.; Wu, M.; She, J.; Liu, G., IEEE trans. automat. control, 49, 828, (2004)
[39] He, Y.; Wang, Q.; Xie, L.; Lin, C., IEEE trans. automat. control, 52, 293, (2007)
[40] Xu, S.; Lam, J., IEEE trans. automat. control, 52, 95, (2007)
[41] Peng, C.; Tian, Y., J. comput. appl. math., 214, 480, (2008)
[42] Peng, C.; Tian, Y., IET control theory appl., 2, 752, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.