×

Chaos generalized synchronization of new Mathieu-Van der pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory. (English) Zbl 1228.93097

Summary: A new strategy by using GYC partial region stability theory is proposed to achieve generalized chaos synchronization. via using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and the lower order controllers are much more simple and introduce less simulation error. Numerical simulations are given for new Mathieu-Van der Pol system and new Duffing-Van der Pol system to show the effectiveness of this strategy.

MSC:

93D15 Stabilization of systems by feedback
34H10 Chaos control for problems involving ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys. rev. lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[2] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. lett. A, 170, 421-428, (1992)
[3] Chen, Y.; Wu, X.; Gui, Z., Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control, Appl. math. model., 34, 4161-4170, (2010) · Zbl 1201.93045
[4] Femat, R.; Perales, G.S., On the chaos synchronization phenomenon, Phys. lett. A, 262, 50-60, (1999) · Zbl 0936.37010
[5] Mu, X.; Pei, L., Synchronization of the near-identical chaotic systems with the unknown parameters, Appl. math. model., 34, 1788-1797, (2010) · Zbl 1193.37046
[6] Lu, J.; Wu, X.; Lu, J., Synchronization of a unified chaotic system and the application in secure communication, Phys. lett. A, 305, 365-370, (2002) · Zbl 1005.37012
[7] Ge, Z.M.; Chen, C.C., Phase synchronization of coupled chaotic multiple time scales systems, Chaos solitons fract., 20, 639-647, (2004) · Zbl 1069.34056
[8] Zhang, W.; Huang, J.; Wei, P., Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control, Appl. math. model., 35, 612-620, (2011) · Zbl 1205.93125
[9] Chen, H.K., Global chaos synchronization of new chaotic systems via nonlinear control, Chaos solitons fract., 23, 1245-1251, (2005) · Zbl 1102.37302
[10] Yang, X.; Cao, J., Finite-time stochastic synchronization of complex networks original research article, Appl. math. model., 34, 3631-3641, (2010) · Zbl 1201.37118
[11] Weng, C.K.; Ray, A.; Dai, X., Modelling of power plant dynamics and uncertainties for robust control synthesis, Appl. math. model., 20, 501-512, (1996) · Zbl 0850.93056
[12] Park, J.H., Adaptive synchronization of rossler system with uncertain parameters, Chaos solitons fract., 25, 333-338, (2005) · Zbl 1125.93470
[13] Park, J.H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fract., 26, 959-964, (2005) · Zbl 1093.93537
[14] Wan, C.; Chang, J.; Yau, H.T.; Chen, J.L., Nonlinear dynamic analysis of a hybrid squeeze-film damper-mounted rigid rotor lubricated with couple stress fluid and active control, Appl. math. model., 34, 2493-2507, (2010) · Zbl 1195.70009
[15] Tang, Y.; Fang, J.A.; Xia, M.; Gu, X., Synchronization of takagi – sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays, Appl. math. model., 34, 843-855, (2010) · Zbl 1185.93145
[16] Ge, Z.M.; Leu, W.Y., Anti-control of chaos of two-degrees-of- freedom louderspeaker system and chaos synchronization of different order systems, Chaos solitons fract., 20, 503-521, (2004) · Zbl 1048.37077
[17] Ge, Z.M.; Chen, Y.S., Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos solitons fract., 21, 101-111, (2004) · Zbl 1048.37027
[18] Ge, Z.M.; Chang, C.M., Chaos synchronization and parameters identification of single time scale brushless dc motors, Chaos solitons fract., 20, 883-903, (2004) · Zbl 1071.34048
[19] Ge, Z.M.; Chen, Y.S., Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos solitons fract., 21, 101-111, (2004) · Zbl 1048.37027
[20] Ge, Z.M.; W Yao, C.; Chen, H.K., Stability on partial region in dynamics, J. Chinese soc. mech. eng., 15, 2, 140-151, (1994)
[21] Ge, Z.M.; Chen, H.K., Three asymptotical stability theorems on partial region with applications, Jpn. J. appl. phys., 37, 2762-2773, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.