zbMATH — the first resource for mathematics

Asymptotic profile of steady Stokes flow around a rotating obstacle. (English) Zbl 1229.35172
The authors analyze the spatial anisotropic profiles at infinity of steady Stokes and Navier-Stokes flows around a rotating obstacle. It is shown that the Stokes flow is largely concentrated along the axis of rotation in the leading term and that a rotating profile can be found in the second term. The leading term for Navier-Stokes flow will be an adequate Landau solution. The proofs rely upon a detailed analysis of the associated fundamental solution tensor.

35Q30 Navier-Stokes equations
35B40 Asymptotic behavior of solutions to PDEs
35Q35 PDEs in connection with fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
Full Text: DOI
[1] Borchers W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes-Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn (1992)
[2] Deuring P., Galdi G.P.: On the asymptotic behavior of physically reasonable solutions to the stationary Navier–Stokes system in three-dimensional exterior domains with zero velocity at infinity. J. Math. Fluid Mech. 2, 353–364 (2000) · Zbl 0973.76022 · doi:10.1007/PL00000958
[3] Farwig R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992) · Zbl 0756.35069 · doi:10.1007/BF02571437
[4] Farwig, R.: The stationary Navier–Stokes equations in a 3D-exterior domain. In: Kozono, H., Shibata, Y. (eds.) Recent Topics on Mathematical Theory of Viscous Incompressible Fluid. Lecture Notes in Num. Appl. Anal., vol. 16. pp. 53–115. Kinokuniya, Tokyo (1998) · Zbl 0941.35064
[5] Farwig R.: An L q -analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. 58, 129–147 (2006) · Zbl 1136.76340 · doi:10.2748/tmj/1145390210
[6] Farwig R., Hishida T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkcial. Ekvac. 50, 371–403 (2007) · Zbl 1180.35408 · doi:10.1619/fesi.50.371
[7] Farwig, R., Hishida, T.: Leading term at infinity of steady Navier-stokes flow around a rotating obstacle. Math. Nachr. (to appear) · Zbl 1229.35173
[8] Farwig R., Hishida T., Müller D.: L q -theory of a singular ”winding” integral operator arising from fluid dynamics. Pac. J. Math. 215, 297–312 (2004) · Zbl 1057.35028 · doi:10.2140/pjm.2004.215.297
[9] Farwig R., Neustupa J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscr. Math. 122, 419–437 (2007) · Zbl 1126.35050 · doi:10.1007/s00229-007-0078-2
[10] Finn R.: On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965) · Zbl 0149.44606 · doi:10.1007/BF00253485
[11] Finn R.: Mathematical questions relating to viscous fluid flow in an exterior domain. Rocky Mt. J. Math. 3, 107–140 (1973) · Zbl 0261.35068 · doi:10.1216/RMJ-1973-3-1-107
[12] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, II, revised edition, Springer, New York (1998) · Zbl 0911.35085
[13] Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 653–791, North-Holland, Amsterdam (2002) · Zbl 1230.76016
[14] Galdi G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003) · Zbl 1156.76367 · doi:10.1023/B:ELAS.0000005543.00407.5e
[15] Galdi G.P., Silvestre A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005) · Zbl 1081.35076 · doi:10.1007/s00205-004-0348-z
[16] Galdi G.P., Silvestre A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake, Kyoto Conference on the Navier–Stokes equations and their applications. RIMS Kôkyûroku Bessatsu B 1, 127–143 (2007) · Zbl 1119.76011
[17] Galdi G.P., Silvestre A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007) · Zbl 1111.76010 · doi:10.1007/s00205-006-0026-4
[18] Geissert M., Heck H., Hieber M.: L p -theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006) · Zbl 1102.76015
[19] Heywood J.G.: On uniqueness questions in the theory of viscous flow. Acta Math. 136, 61–102 (1976) · Zbl 0347.76016 · doi:10.1007/BF02392043
[20] Hishida T.: The Stokes operator with rotation effect in exterior domains. Analysis 19, 51–67 (1999) · Zbl 0938.35114
[21] Hishida T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999) · Zbl 0949.35106 · doi:10.1007/s002050050190
[22] Hishida T.: L q estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 743–767 (2006) · Zbl 1184.35241 · doi:10.2969/jmsj/1156342036
[23] Hishida T., Shibata Y.: L p -L q estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 339–421 (2009) · Zbl 1169.76015 · doi:10.1007/s00205-008-0130-8
[24] Korolev, A., Šverák, V.: On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains. arXiv:math/07110560, preprint (2007)
[25] Kozono H., Sohr H., Yamazaki M.: Representation formula, net force and energy relation to the stationary Navier–Stokes equations in 3-dimensional exterior domains. Kyushu J. Math. 51, 239–260 (1997) · Zbl 0890.35102 · doi:10.2206/kyushujm.51.239
[26] Kračmar S., Nečasová Š., Penel P.: Anisotropic L 2-estimates of weak solutions to the stationary Oseen-type equations in 3D-exterior domain for a rotating body. J. Math. Soc. Jpn. 62, 239–268 (2010) · Zbl 1186.35163 · doi:10.2969/jmsj/06210239
[27] Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. Gordon and Breach, New York (1969) · Zbl 0184.52603
[28] Nazarov S.A., Pileckas K.: On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain. J. Math. Kyoto Univ. 40, 475–492 (2000) · Zbl 0976.35051
[29] Shibata Y.: On an exterior initial boundary value problem for Navier–Stokes equations. Quart. Appl. Math. 57, 117–155 (1999) · Zbl 1157.35451
[30] Silvestre A.L.: On the existence of steady flows of a Navier–Stokes liquid around a moving rigid body. Math. Methods Appl. Sci. 27, 1399–1409 (2004) · Zbl 1061.35078 · doi:10.1002/mma.509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.