zbMATH — the first resource for mathematics

Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable. (English) Zbl 1229.35176
Some relevant properties of solutions to the Cauchy problem associated with the time-dependent Oseen equations are proved. It is shown that a generic Leray solution enjoys a number of summability properties in any neighborhood of infinity. It is proved that every Leray solution is physically reasonable.

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76U05 General theory of rotating fluids
Full Text: DOI
[1] Babenko K.: On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Math. USSR, Sb. 20, 1–25 (1973) · Zbl 0285.76009 · doi:10.1070/SM1973v020n01ABEH001823
[2] Bogovski, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad. In: Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Trudy Sem. S. L. Soboleva, No. 1, Vol. 1980, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980)
[3] Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn (1992)
[4] Deuring, P., Kračmar, S., Nečasová, Š.: On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies. Preprint (2009)
[5] Farwig R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted spaces. Math. Z. 211(3), 409–448 (1992) · Zbl 0756.35069 · doi:10.1007/BF02571437
[6] Farwig R.: An L q -analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. (2) 58(1), 129–147 (2006) · Zbl 1136.76340 · doi:10.2748/tmj/1145390210
[7] Farwig R., Hishida T., Muller D.: L q -theory of a singular winding integral operator arising from fluid dynamics. Pac. J. Math. 215(2), 297–312 (2004) · Zbl 1057.35028 · doi:10.2140/pjm.2004.215.297
[8] Farwig, R., Sohr, H.: Weighted estimates for the Oseen equations and the Navier–Stokes equations in exterior domains. Theory of the Navier–Stokes equations. Proceedings of the third international conference on the Navier–Stokes equations: theory and numerical methods, Oberwolfach, Germany, June 5–11, 1994 (Eds. Heywood, J.G., et al.). World Scientific, Singapore. Ser. Adv. Math. Appl. Sci. 47, 11–30 (1998) · Zbl 0934.35120
[9] Finn R.: On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965) · Zbl 0149.44606 · doi:10.1007/BF00253485
[10] Galdi G.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003) · Zbl 1156.76367 · doi:10.1023/B:ELAS.0000005543.00407.5e
[11] Galdi, G.P.: On the asymptotic structure of D-solutions to steady Navier–Stokes equations in exterior domains. Mathematical Problems Relating to the Navier–Stokes Equation (Ed. Galdi G.P.). World Scientific Publishing Co., River Edge. Ser. Adv. Math. Appl. Sci. 11, 81–104 (1992) · Zbl 0794.35111
[12] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I: Linearized steady problems. Springer Tracts in Natural Philosophy, Vol. 38. Springer, New York, 1994 · Zbl 0949.35004
[13] Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Vol. II: Nonlinear steady problems. Springer Tracts in Natural Philosophy, Vol. 39. Springer, New York, 1994 · Zbl 0949.35005
[14] Galdi, G.P.: On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. Handbook of mathematical fluid dynamics, Vol. 1 (Eds. Friedlander S., et al.). Elsevier, Amsterdam, 653–791, 2002 · Zbl 1230.76016
[15] Galdi, G.P., Silvestre, A.L.: Further results on steady-state flow of a Navier–Stokes liquid around a rigid body. Existence of the wake. Kyoto Conference on the Navier–Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1, pp. 127–143. Res. Inst. Math. Sci. (RIMS), Kyoto (2007) · Zbl 1119.76011
[16] Galdi G.P., Silvestre A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184(3), 371–400 (2007) · Zbl 1111.76010 · doi:10.1007/s00205-006-0026-4
[17] Hishida, T.: Steady motions of the Navier–Stokes fluid around a rotating body. Asymptotic analysis and singularities–hyperbolic and dispersive PDEs and fluid mechanics, Adv. Stud. Pure Math., Vol. 47. Math. Soc. Japan, Tokyo, 117–136, 2007
[18] Hishida, T., Shibata, Y.: Decay estimates of the Stokes flow around a rotating obstacle. Kyoto Conference on the Navier–Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1. Res. Inst. Math. Sci. (RIMS), Kyoto, 167–186, 2007 · Zbl 1119.35052
[19] Hishida T., Shibata Y.: L p q estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193(2), 339–421 (2009) · Zbl 1169.76015 · doi:10.1007/s00205-008-0130-8
[20] Kračmar, S., Nečasová, V., Penel, P.: L q -approach to weak solutions of the Oseen flow around a rotating body. Parabolic and Navier–Stokes equations. Part 1. Proceedings of the confererence, Bedlewo, Poland, September 10–17, 2006 (Eds. Rencławowicz, J., et al.). Polish Academy of Sciences, Institute of Mathematics, Warsaw. Banach Center Publications 81, Pt. 1, 259–276, 2008
[21] Leray J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933) · Zbl 0006.16702
[22] Maremonti P., Solonnikov V.: On nonstationary Stokes problem in exterior domains. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24(3), 395–449 (1997) · Zbl 0958.35103
[23] Mizumachi R.: On the asymptotic behavior of incompressible viscous fluid motions past bodies. J. Math. Soc. Japan 36, 497–522 (1984) · Zbl 0578.76026 · doi:10.2969/jmsj/03630497
[24] Oseen, C.: Hydrodynamik. Akademische Verlagsgesellschaft M.B.H., Leipzig, 1927
[25] Solonnikov V.: Estimates of the solutions of a nonstationary linearized system of Navier–Stokes equations. Am. Math. Soc., Transl., II. Ser. 75, 1–116 (1968) · Zbl 0187.03402
[26] Weinberger H. On the steady fall of a body in a Navier–Stokes fluid. Partial diff. Equ., Berkeley 1971. Proc. Sympos. Pure Math. 23, 421–439, 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.