×

zbMATH — the first resource for mathematics

The subgradient extragradient method for solving variational inequalities in Hilbert space. (English) Zbl 1229.58018
Authors’ abstract: We present a subgradient extragradient method for solving variational inequalities in Hilbert space. In addition, we propose a modified version of our algorithm that finds a solution of a variational inequality which is also a fixed point of a given nonexpansive mapping. We establish weak convergence theorems for both algorithms.

MSC:
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976) · Zbl 0342.90044
[2] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003) · Zbl 1062.90002
[3] Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997) · Zbl 0891.90135 · doi:10.1080/02331939708844365
[4] Khobotov, E.N.: Modification of the extra-gradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1989) · Zbl 0665.90078 · doi:10.1016/0041-5553(87)90058-9
[5] Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999) · Zbl 0959.49007 · doi:10.1137/S0363012997317475
[6] Censor, Y., Gibali, A., Reich, S.: Two extensions of Korpelevich’s extragradient method for solving the variational inequality problem in Euclidean space. Technical Report (2010) · Zbl 1260.65056
[7] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York and Basel (1984) · Zbl 0537.46001
[8] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[9] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[10] Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[11] Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006) · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[12] Browder, F.E.: Fixed point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 53, 1272–1276 (1965) · Zbl 0125.35801 · doi:10.1073/pnas.53.6.1272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.