×

zbMATH — the first resource for mathematics

Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. (English) Zbl 1229.74062
Summary: Based on the First-order Shear Deformation Theory (FSDT) this paper focuses on the dynamic behavior of moderately thick functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal. These constituents are graded through the thickness, from one surface of the shell to the other. A generalization of the power-law distribution presented in literature is proposed. Two different four-parameter power-law distributions are considered for the ceramic volume fraction. Some material profiles through the functionally graded shell thickness are illustrated by varying the four parameters of power-law distributions. For the first power-law distribution, the bottom surface of the structure is ceramic rich, whereas the top surface can be metal rich, ceramic rich or made of a mixture of the two constituents and on the contrary for the second one. Symmetric and asymmetric volume fraction profiles are presented in this paper. The homogeneous isotropic material can be inferred as a special case of functionally graded materials (FGM). The governing equations of motion are expressed as functions of five kinematic parameters, by using the constitutive and kinematic relationships. The solution is given in terms of generalized displacement components of the points lying on the middle surface of the shell. The discretization of the system equations by means of the Generalized Differential Quadrature (GDQ) method leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. Numerical results concerning six types of shell structures illustrate the influence of the power-law exponent, of the power-law distribution and of the choice of the four parameters on the mechanical behaviour of shell structures considered.

MSC:
74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reddy, J.N., Mechanics of laminated composites plates and shells, (2003), CRC Press New York
[2] Viola, E.; Artioli, E., The G.D.Q. method for the harmonic dynamic analysis of rotational shell structural elements, Struct. engrg. mech., 17, 789-817, (2004)
[3] Artioli, E.; Gould, P.; Viola, E., A differential quadrature method solution for shear-deformable shells of revolution, Engrg. struct., 27, 1879-1892, (2005)
[4] Artioli, E.; Viola, E., Static analysis of shear-deformable shells of revolution via G.D.Q. method, Struct. engrg. mech., 19, 459-475, (2005)
[5] Artioli, E.; Viola, E., Free vibration analysis of spherical caps using a G.D.Q. numerical solution, J. press vessel-tech. ASME, 128, 370-378, (2006)
[6] Shu, C., An efficient approach for free vibration analysis of conical shells, Int. J. mech. sci., 38, 935-949, (1996) · Zbl 0857.73079
[7] Lam, K.Y.; Hua, L., Vibration analysis of a rotating truncated circular conical shell, Int. J. solids struct., 34, 2183-2197, (1997) · Zbl 0944.74560
[8] Hua, L.; Lam, K.Y., Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method, Int. J. mech. sci., 40, 443-459, (1998) · Zbl 0899.73270
[9] Ng, T.Y.; Li, H.; Lam, K.Y.; Loy, C.T., Parametric instability of conical shells by the generalized differential quadrature method, Int. J. numer. meth. engrg., 44, 819-837, (1999) · Zbl 0956.74080
[10] Hua, L.; Lam, K.Y., The generalized quadrature method for frequency analysis of a rotating conical shell with initial pressure, Int. J. numer. meth. engrg., 48, 1703-1722, (2000) · Zbl 0989.74078
[11] Lam, K.Y.; Hua, L., Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell, Int. J. mech. sci., 42, 213-236, (2000) · Zbl 0978.74033
[12] Lam, K.Y.; Li, H.; Ng, T.Y.; Chua, C.F., Generalized differential quadrature method for the free vibration of truncated conical panels, J. sound vib., 251, 329-348, (2002) · Zbl 1237.74214
[13] Wu, C.P.; Lee, C.Y., Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness, Int. J. mech. sci., 43, 1853-1869, (2001) · Zbl 1048.74603
[14] Shu, C., Free vibration analysis of composite laminated conical shells by generalized differential quadrature, J. sound vib., 194, 587-604, (1996) · Zbl 1232.74034
[15] Hua, L.; Lam, K.Y., Orthotropic influence on frequency characteristics of rotating composite laminated conical shell by the generalized differential quadrature method, Int. J. solids struct., 38, 3995-4015, (2001) · Zbl 0969.74619
[16] Ng, T.Y.; Lam, K.Y.; Liew, K.M., Effect of FGM materials on the parametric resonance of plate structures, Comput. methods appl. mech. engrg., 190, 953-962, (2000) · Zbl 1009.74038
[17] Yang, J.; Kitipornchai, S.; Liew, K.M., Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates, Comput. methods appl. mech. engrg., 192, 3861-3885, (2003) · Zbl 1054.74603
[18] Wu, C.P.; Tsai, Y.H., Asymptotic DQ solutions of functionally graded annular spherical shells, Eur. J. mech A-solids, 23, 283-299, (2004) · Zbl 1058.74575
[19] Liew, K.M.; He, X.Q.; Kitipornchai, S., Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators, Comput. methods appl. mech. engrg., 193, 257-273, (2004) · Zbl 1075.74594
[20] Della Croce, L.; Venini, P., Finite elements for functionally graded reissner – mindlin plates, Comput. methods appl. mech. engrg., 193, 705-725, (2004) · Zbl 1106.74408
[21] Elishakoff, I.; Gentilini, C.; Viola, E., Forced vibrations of functionally graded plates in the three-dimensional setting, Aiaa j., 43, 2000-2007, (2005)
[22] Elishakoff, I.; Gentilini, C.; Viola, E., Three-dimensional analysis of an all-around clamped plate made of functionally graded materials, Acta mech., 180, 21-36, (2005) · Zbl 1082.74029
[23] Patel, B.P.; Gupta, S.S.; Loknath, M.S.; Kadu, C.P., Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory, Compos. struct., 69, 259-270, (2005)
[24] Abrate, S., Free vibration, buckling, and static deflection of functionally graded plates, Compos. sci. technol., 66, 2383-2394, (2006)
[25] Zenkour, A.M., Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. math. model., 30, 67-84, (2006) · Zbl 1163.74529
[26] Pelletier, J.L.; Vel, S.S., An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells, Int. J. solids struct., 43, 1131-1158, (2006) · Zbl 1119.74475
[27] Arciniega, R.A.; Reddy, J.N., Large deformation analysis of functionally graded shells, Int. J. solids struct., 44, 2036-2052, (2007) · Zbl 1108.74038
[28] Arciniega, R.A.; Reddy, J.N., Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Comput. methods appl. mech. engrg., 196, 1048-1073, (2007) · Zbl 1120.74802
[29] Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R.M.N., A radial basis function for the free vibration analysis of functionally graded plates using refined theory, J. sound vib., 300, 1048-1070, (2007)
[30] Nie, G.J.; Zhong, Z., Semi-analytical solution for three dimensional vibration of functionally graded circular plates, Comput. methods appl. mech. engrg., 196, 4901-4910, (2007) · Zbl 1173.74339
[31] Yang, J.; Shen, H.S., Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels, J. sound vib., 261, 871-893, (2007)
[32] Shu, C., Differential quadrature and its application in engineering, (2000), Springer Berlin · Zbl 0944.65107
[33] Liew, K.M.; Teo, T.M., Modeling via differential quadrature method: three-dimensional solutions for rectangular plates, Comput. methods appl. mech. engrg., 159, 369-381, (1998) · Zbl 0962.74548
[34] Han, J.-B.; Liew, K.M., Static analysis of Mindlin plates: the differential quadrature element method (DQEM), Comput. methods appl. mech. engrg., 177, 51-75, (1999) · Zbl 0979.74079
[35] Liu, F.-L.; Liew, K.M., Vibration analysis of Mindlin sector plates: numerical solution by differential quadrature method, Comput. methods appl. mech. engrg., 177, 77-92, (1999) · Zbl 0964.74026
[36] Liu, F.-L.; Liew, K.M., Differential quadrature element method: a new approach for free vibration of polar Mindlin plates having discontinuities, Comput. methods appl. mech. engrg., 179, 407-423, (1999) · Zbl 0967.74080
[37] Karami, G.; Malekzadeh, P., A new differential quadrature methodology for beam analysis and the associated differential quadrature element method, Comput. methods appl. mech. engrg., 191, 3509-3526, (2002) · Zbl 1101.74374
[38] Liew, K.M.; Ng, T.Y.; Zhang, J.Z., Differential quadrature-layerwise modeling technique for three dimensional analysis of cross-ply laminated plates of various edge supports, Comput. methods appl. mech. engrg., 191, 3811-3832, (2002) · Zbl 1101.74375
[39] Wu, T.Y.; Wang, Y.Y.; Liu, G.R., Free vibration analysis of circular plates using generalized differential quadrature rule, Comput. methods appl. mech. engrg., 191, 5365-5380, (2002) · Zbl 1083.74549
[40] Wu, T.Y.; Wang, Y.Y.; Liu, G.R., A generalized differential quadrature rule for bending analyses of cylindrical barrel shells, Comput. methods appl. mech. engrg., 192, 1629-1647, (2003) · Zbl 1050.74058
[41] Huang, Y.Q.; Li, Q.S., Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method, Comput. methods appl. mech. engrg., 193, 3471-3492, (2004) · Zbl 1068.74090
[42] Wang, X.; Wang, Y., Free vibration analyses of thin sector plates by the new version of differential quadrature method, Comput. methods appl. mech. engrg., 193, 3957-3971, (2004) · Zbl 1068.74091
[43] Malekzadeh, P.; Karami, G.; Farid, M., A semi-analytical DQEM for free vibration analysis of thick plates with two opposite edges simply supported, Comput. methods appl. mech. engrg., 193, 4781-4796, (2004) · Zbl 1112.74566
[44] Hsu, M.H., Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method, Comput. methods appl. mech. engrg., 194, 1-17, (2005) · Zbl 1112.74392
[45] Ding, H.; Shu, C.; Yeo, K.S.; Xu, D., Numerical computation of three-dimensional viscous flows in primitive variable form by local multiquadric differential quadrature, Comput. methods appl. mech. engrg., 195, 516-533, (2006) · Zbl 1222.76072
[46] Wang, X., Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method, Comput. methods appl. mech. engrg., 196, 2242-2251, (2007) · Zbl 1173.74333
[47] Wang, Y.; Liu, R.; Wang, X., Free vibration analysis of truncated conical shells by the differential quadrature method, J. sound vib., 224, 387-394, (1999)
[48] Wang, Y.; Liu, R.; Wang, X., On free vibration analysis of nonlinear piezoelectric circular shallow spherical shells by the differential quadrature element method, J. sound vib., 245, 179-185, (2001)
[49] Marzani, A.; Tornabene, F.; Viola, E., Nonconservative stability problems via generalized differential quadrature method, J. sound vib., 315, 176-196, (2008)
[50] F. Tornabene, Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo, PhD Thesis, University of Bologna - DISTART Department, 2007.
[51] Tornabene, F.; Viola, E., Vibration analysis of spherical structural elements using the GDQ method, Comput. math. appl., 53, 1538-1560, (2007) · Zbl 1152.74350
[52] Tornabene, F.; Viola, E., 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method, Eur. J. mech. A/solids, 27, 1001-1025, (2008) · Zbl 1151.74360
[53] Viola, E.; Tornabene, F., Vibration analysis of damaged circular arches with varying cross-section, Struct. integr. durab. (SID-SDHM), 1, 155-169, (2005)
[54] Viola, E.; Dilena, M.; Tornabene, F., Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches, J. sound vib., 299, 143-163, (2007)
[55] Viola, E.; Tornabene, F., Vibration analysis of conical shell structures using GDQ method, Far east J. appl. math., 25, 23-39, (2006) · Zbl 1113.74096
[56] Alfano, G.; Auricchio, F.; Rosati, L.; Sacco, E., MITC finite elements for laminated composite plates, Int. J. numer. meth. engrg., 50, 707-738, (2001) · Zbl 1011.74065
[57] Auricchio, F.; Sacco, E., A mixed-enhanced finite-element for the analysis of laminated composite plates, Int. J. numer. meth. engrg., 44, 1481-1504, (1999) · Zbl 0957.74044
[58] Auricchio, F.; Sacco, E., Refined first-order shear deformation theory models for composite laminates, J. appl. mech., 70, 381-390, (2003) · Zbl 1110.74320
[59] Toorani, M.H.; Lakis, A.A., General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects, J. sound vib., 237, 561-615, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.