×

Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. (English) Zbl 1229.74101

Summary: Because wall shear stress (WSS) is known to play an important role in initiation, growth and rupture of cerebral aneurysm, predicting the hemodynamic forces near the aneurysmal site helps with understanding aneurysms better. Earlier research reports indicate that the WSS around the aneurysmal site has a significant relationship with the vascular and aneurysm morphology. It was also shown statistically that the aneurysm shape (aspect ratio) is an indicator of rupture risk in cerebral aneurysm. In this study, fluid-structure interaction (FSI) modeling of a ruptured aneurysm, two unruptured aneurysms at the middle cerebral artery (MCA) bifurcation, and a MCA bifurcation without aneurysm is carried out using vascular geometries reconstructed from CT images. We use pulsatile boundary conditions based on a physiological flow velocity waveform and investigate the relationship between the hemodynamic forces and vascular morphology for different arteries and aneurysms. The results are compared with the results obtained for the rigid arterial wall to highlight the role of FSI in the patient-specific modeling of cerebral aneurysm. The results show that the interaction between the blood flow and arterial deformation alters the hemodynamic forces acting on the arterial wall and the interaction strongly depends on the individual aneurysm shapes. Flow impingement on the arterial wall plays a key role in determining the interaction and hemodynamic forces. When the blood flow impinges strongly on the wall, the maximum WSS tends to decrease due to the flow-wall interaction. When the blood flows straight into an aneurysm, the flow and the resulting WSS patterns are altered both qualitatively and quantitatively. When the blood in the aneurysm is nearly stagnant, a slow flow is induced by the wall motion, which raises the minimum WSS on the aneurysmal wall. The results reinforce the importance of FSI in patient-specific analysis of cerebral aneurysms.

MSC:

74L15 Biomechanical solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z05 Physiological flows
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] van Gijn, J.; Rinkel, G.J.E., Subarachnoid heamorrhage: diagnosis, cause and management, Brain, 124, 249-278, (2001)
[2] Steiger, H.J., Pathophysiology of development and rupture of cerebral aneurysms, Acta neurochir. suppl., 48, 1-57, (1990)
[3] Lehoux, S.; Tronc, F.; Tedgui, A., Mechanisms of blood flow-induced vascular enlargement, Biorheology, 39, 319-324, (2002)
[4] Ujiie, H.; Tachibana, H.; Hiramatsu, O.; Hazel, A.; Matsumoto, T.; Ogasawara, Y.; Nakajima, H.; Hori, T.; Takakura, K.; Kajiya, F., Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms, Neurosurgery, 45, 119-130, (1999)
[5] Russel, S.M.; Lin, K.; Hahn, S.A.; Jafar, J.J., Smaller cerebral aneurysms producing more extensive subarachnoid hemorrhage following rupture: a radiological investigation and discussion of theoretical determinants, J. neurosurg., 99, 248-253, (2003)
[6] Tateshima, S.; Murayama, Y.; Villablanca, J.P.; Morino, T.; Takahashi, H.; Yamauchi, T.; Tanishita, K.; Vinuela, F., Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold, J. neurosurg., 95, 1020-1027, (2001)
[7] Burleson, A.C.; Strother, C.M.; Turitto, V.T., Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics, Neurosurgery, 37, 774-783, (1995)
[8] Foutrakis, G.N.; Yonas, H.; Sclabassi, R.J., Saccular aneurysm formation in curved and bifurcating arteries, Am. J. neuroradiol., 20, 1309-1317, (1999)
[9] Shojima, M.; Oshima, M.; Takagi, K.; Torii, R.; Hayakawa, M.; Katada, K.; Morita, M.; Kirino, T., Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms, Stroke, 35, 2500-2505, (2004)
[10] Cebral, J.R.; Castro, M.A.; Burgess, J.E.; Pergolizzi, R.S.; Sheridan, M.J.; Putman, C.M., Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. neuroradiol., 26, 2550-2559, (2005)
[11] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E., Fluid – structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Comput. mech., 38, 482-490, (2006) · Zbl 1160.76061
[12] Zakaria, H.; Yonas, H.; Robertson, A.M., Analysis of the importance of the ratio of aneurysm size to parent artery diameter on hemodynamic condition, J. biomech., 39, S272, (2006)
[13] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E., Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm — dependence of the effect on the aneurysm shape, Int. J. numer. methods fluid, 54, 995-1009, (2007) · Zbl 1317.76107
[14] Hayashi, K.; Handa, H.; Nagasawa, S.; Okumura, A.; Moritake, K., Stiffness and elastic behavior of human intracranial and extracranial arteries, J. biomech., 13, 175-184, (1980)
[15] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E., Computer modeling of cardiovascular fluid – structure interactions with the deforming – spatial – domain/stabilized space – time formulation, Comput. methods appl. mech. engrg., 195, 1885-1895, (2006) · Zbl 1178.76241
[16] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 310-322, (2006) · Zbl 1161.74020
[17] Tezduyar, T.E.; Sathe, S.; Cragin, T.; Nanna, B.; Conklin, B.S.; Pausewang, J.; Schwaab, M., Modeling of fluid – structure interactions with the space – time finite elements: arterial fluid mechanics, Int. J. numer. methods fluid, 54, 901-922, (2007) · Zbl 1276.76043
[18] Tezduyar, T.E.; Sathe, S.; Schwaab, M.; Conklin, B.S., Arterial fluid mechanics modeling with the stabilized space – time fluid – structure interaction technique, Int. J. numer. methods fluid, 57, 601-629, (2008) · Zbl 1230.76054
[19] Karino, T.; Takeuchi, S.; Kobayashi, N.; Motomiya, M.; Mabuchi, S., Fluid dynamics of cerebrovascular disease (in Japanese), Neurosurgeons, 12, 15-24, (1993)
[20] Tezduyar, T.E., Stabilized finite element formulations for incompressible flow computations, Adv. appl. mech., 28, 1-44, (1992) · Zbl 0747.76069
[21] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces – the deforming – spatial – domain/space – time procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[22] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces – the deforming – spatial – domain/space – time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[23] Tezduyar, T.E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. numer. methods fluid, 43, 555-575, (2003) · Zbl 1032.76605
[24] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[25] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[26] Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity – pressure elements, Comput. methods appl. mech. engrg., 95, 221-242, (1992) · Zbl 0756.76048
[27] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška – brezzi condition: a stable petrov – galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[28] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 27-36, (1993)
[29] Tezduyar, T.E.; Aliabadi, S.K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput. methods appl. mech. engrg., 119, 157-177, (1994) · Zbl 0848.76040
[30] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M., Flow simulation and high performance computing, Comput. mech., 18, 397-412, (1996) · Zbl 0893.76046
[31] Tezduyar, T.E., CFD methods for three-dimensional computation of complex flow problems, J. wind engrg. ind. aerodynam., 81, 97-116, (1999)
[32] Tezduyar, T.E., Finite element methods for flow problems with moving boundaries and interfaces, Archives comput. methods engrg., 8, 83-130, (2001) · Zbl 1039.76037
[33] Tezduyar, T.E., Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces, Comput. methods appl. mech. engrg., 195, 2983-3000, (2006) · Zbl 1176.76076
[34] Tezduyar, T.E., Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput. fluid, 36, 191-206, (2007) · Zbl 1177.76202
[35] Tezduyar, T.E., Finite elements in fluids: special methods and enhanced solution techniques, Comput. fluid, 36, 207-223, (2007) · Zbl 1177.76203
[36] Mittal, S.; Tezduyar, T.E., Parallel finite element simulation of 3D incompressible flows – fluid – structure interactions, Int. J. numer. methods fluid, 21, 933-953, (1995) · Zbl 0873.76047
[37] Kalro, V.; Tezduyar, T.E., A parallel 3D computational method for fluid – structure interactions in parachute systems, Comput. methods appl. mech. engrg., 190, 321-332, (2000) · Zbl 0993.76044
[38] Tezduyar, T.; Osawa, Y., Fluid – structure interactions of a parachute crossing the far wake of an aircraft, Comput. methods appl. mech. engrg., 191, 717-726, (2001) · Zbl 1113.76407
[39] Stein, K.R.; Benney, R.J.; Tezduyar, T.E.; Leonard, J.W.; Accorsi, M.L., Fluid – structure interactions of a round parachute: modeling and simulation techniques, J. aircraft, 38, 800-808, (2001)
[40] Tezduyar, T.E.; Sathe, S.; Keedy, R.; Stein, K., Space – time finite element techniques for computation of fluid – structure interactions, Comput. methods appl. mech. engrg., 195, 2002-2027, (2006) · Zbl 1118.74052
[41] Tezduyar, T.E.; Sathe, S.; Stein, K., Solution techniques for the fully-discretized equations in computation of fluid – structure interactions with the space – time formulations, Comput. methods appl. mech. engrg., 195, 5743-5753, (2006) · Zbl 1123.76035
[42] Tezduyar, T.E.; Sathe, S., Modeling of fluid – structure interactions with the space – time finite elements: solution techniques, Int. J. numer. methods fluid, 54, 855-900, (2007) · Zbl 1144.74044
[43] Humphrey, J.D., Cardiovascular solid mechanics, Cells, tissues, and organs, (2002), Springer Verlag New York
[44] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E., Fluid – structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling, Comput. mech., 43, 151-159, (2008) · Zbl 1169.74032
[45] Tezduyar, T.E., Finite element methods for fluid dynamics with moving boundaries and interfaces, () · Zbl 0848.76036
[46] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the finite element methods – space – time formulations, iterative strategies and massively parallel implementations, (), 7-24
[47] Loremson, W.E.; Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm, Comput. graphics, 21, 163-169, (1987)
[48] Riley, W.A.; Barnes, R.W.; Evans, G.W.; Burke, G.L., Ultrasonic measurement of the elastic modulus of the common carotid artery. the atherosclerosis risk in communities (ARIC) study, Stroke, 23, 952-956, (1992)
[49] Wells, R.E.; Merrill, E.W., Shear rate dependence of the viscosity of whole blood and plasma, Science, 133, 763-764, (1961)
[50] Cebral, J.R.; Castro, M.A.; Appanaboyina, S.; Putman, C.M.; Millan, D.; Frangi, A.F., Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity, IEEE trans. med. imaging, 24, 457-467, (2005)
[51] Womersley, J.R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. physiol., 127, 553-563, (1955)
[52] Malek, A.M.; Alper, S.L.; Izumo, S., Hemodynamic shear stress and its role in atherosclerosis, J. am. med. assoc., 282, 2035-2042, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.