×

Asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential. (English) Zbl 1229.82096

Summary: In a previous paper, we proposed a method of renormalization for constructing some more physically realistic random potentials in a Poisson cloud. This paper is devoted to the detailed analysis of the asymptotic behavior of the annealed negative exponential moments for the Brownian motion in a renormalized Poisson potential. The main results of the paper are applied to studying the Lifshitz tails asymptotics of the integrated density of states for random Schrödinger operators with their potential terms represented by renormalized Poisson potentials.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
60K37 Processes in random environments
60J65 Brownian motion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, Germany, 1998. · Zbl 0973.60003
[2] T. Komorowski, “Brownian motion in a Poisson obstacle field,” Séminaire Bourbaki, vol. 1998/9, no. 853, pp. 91-111, 2000. · Zbl 0964.60091
[3] S. Bezerra, S. Tindel, and F. Viens, “Superdiffusivity for a Brownian polymer in a continuous Gaussian environment,” The Annals of Probability, vol. 36, no. 5, pp. 1642-1675, 2008. · Zbl 1149.82032 · doi:10.1214/07-AOP363
[4] M. van den Berg, E. Bolthausen, and F. den Hollander, “Brownian survival among Poissonian traps with random shapes at critical intensity,” Probability Theory and Related Fields, vol. 132, no. 2, pp. 163-202, 2005. · Zbl 1072.60067 · doi:10.1007/s00440-004-0393-4
[5] F. Germinet, P. D. Hislop, and A. Klein, “Localization for Schrödinger operators with Poisson random potential,” Journal of the European Mathematical Society, vol. 9, no. 3, pp. 577-607, 2007. · Zbl 1214.82053
[6] T. Povel, “Confinement of Brownian motion among Poissonian obstacles in \Bbb Rd, d\geq 3,” Probability Theory and Related Fields, vol. 114, no. 2, pp. 177-205, 1999. · Zbl 0943.60082 · doi:10.1007/s440-1999-8036-0
[7] X. Chen and A. M. Kulik, “Brownian motion and parabolic Anderson model in a renormalized Poisson potential,” Annales de l’Institut Henry Poincare. Accepted. · Zbl 1279.60106
[8] X. Chen, “Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models,” to appear in Annals of Probability. · Zbl 1259.60094
[9] P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review, vol. 109, no. 5, pp. 1492-1505, 1958. · doi:10.1103/PhysRev.109.1492
[10] R. A. Carmona and S. A. Molchanov, Parabolic Anderson Problem and Intermittency, vol. 108 of Memoirs of the American Mathematical Society, 1994. · Zbl 0925.35074
[11] M. Biskup and W. König, “Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model,” Journal of Statistical Physics, vol. 102, no. 5-6, pp. 1253-1270, 2001. · Zbl 1174.82333 · doi:10.1023/A:1004840328675
[12] R. A. Carmona and F. G. Viens, “Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter,” Stochastics and Stochastics Reports, vol. 62, no. 3-4, pp. 251-273, 1998. · Zbl 0908.60062
[13] M. Cranston, D. Gauthier, and T. S. Mountford, “On large deviations for the parabolic Anderson model,” Probability Theory and Related Fields, vol. 147, no. 1-2, pp. 349-378, 2010. · Zbl 1202.60040 · doi:10.1007/s00440-009-0249-z
[14] R. C. Dalang and C. Mueller, “Intermittency properties in a hyperbolic Anderson problem,” Annales de l’Institut Henri Poincaré Probabilités et Statistiques, vol. 45, no. 4, pp. 1150-1164, 2009. · Zbl 1196.60116 · doi:10.1214/08-AIHP199
[15] I. Florescu and F. Viens, “Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space,” Probability Theory and Related Fields, vol. 135, no. 4, pp. 603-644, 2006. · Zbl 1105.60042 · doi:10.1007/s00440-005-0471-2
[16] J. Gärtner, F. den Hollander, and G. Maillard, “Intermittency on catalysts: symmetric exclusion,” Electronic Journal of Probability, vol. 12, no. 18, pp. 516-573, 2007. · Zbl 1129.60061
[17] J. Gärtner and W. König, “Moment asymptotics for the continuous parabolic Anderson model,” The Annals of Applied Probability, vol. 10, no. 1, pp. 192-217, 2000. · Zbl 1171.60359 · doi:10.1214/aoap/1019737669
[18] J. Gärtner, W. König, and S. A. Molchanov, “Almost sure asymptotics for the continuous parabolic Anderson model,” Probability Theory and Related Fields, vol. 118, no. 4, pp. 547-573, 2000. · Zbl 0972.60056 · doi:10.1007/s004400000096
[19] J. Gärtner and S. A. Molchanov, “Parabolic problems for the Anderson model. I. Intermittency and related topics,” Communications in Mathematical Physics, vol. 132, no. 3, pp. 613-655, 1990. · Zbl 0711.60055 · doi:10.1007/BF02156540
[20] G. Stolz, “Non-monotonic random Schrödinger operators: the Anderson model,” Journal of Mathematical Analysis and Applications, vol. 248, no. 1, pp. 173-183, 2000. · Zbl 0974.47034 · doi:10.1006/jmaa.2000.6885
[21] L. A. Pastur, “Spectra of random selfadjoint operators,” Uspekhi Matematicheskikh Nauk, vol. 28, no. 1(169), pp. 3-64, 1973. · Zbl 0277.60049
[22] W. Kirsch and F. Martinelli, “On the density of states of Schrödinger operators with a random potential,” Journal of Physics A, vol. 15, no. 7, pp. 2139-2156, 1982. · Zbl 0492.60055 · doi:10.1088/0305-4470/15/7/025
[23] I. Lifshitz, “Structure of the energy spectrum of impurity bands in disordered solid solutions,” Soviet Physics, vol. 17, pp. 1159-1170, 1963.
[24] I. M. Lifshitz, “Energy spectrum structure and quantum states of disordered condensed systems,” Soviet Physics. Uspekhi, vol. 7, pp. 549-573, 1965. · doi:10.1070/PU1965v007n04ABEH003634
[25] L. Erd\Hos, “Lifschitz tail in a magnetic field: the nonclassical regime,” Probability Theory and Related Fields, vol. 112, no. 3, pp. 321-371, 1998. · Zbl 0921.60099 · doi:10.1007/s004400050193
[26] L. Erd\Hos, “Lifschitz tail in a magnetic field: coexistence of classical and quantum behavior in the borderline case,” Probability Theory and Related Fields, vol. 121, no. 2, pp. 219-236, 2001. · Zbl 0991.60098 · doi:10.1007/s004400100145
[27] R. Fukushima, “Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential,” http://arxiv.org/abs/arXiv:1010.3875. · Zbl 1251.60075
[28] D. Hundertmark, W. Kirsch, and S. Warzel, “Classical magnetic Lifshits tails in three space dimensions: impurity potentials with slow anisotropic decay,” Markov Processes and Related Fields, vol. 9, no. 4, pp. 651-660, 2003. · Zbl 1213.82046
[29] O. Khorunzhiy, W. Kirsch, and P. Müller, “Lifshitz tails for spectra of Erd\Hos-Rényi random graphs,” The Annals of Applied Probability, vol. 16, no. 1, pp. 295-309, 2006. · Zbl 1113.05311 · doi:10.1214/1050516000000719
[30] W. Kirsch and F. Martinelli, “On the spectrum of Schrödinger operators with a random potential,” Communications in Mathematical Physics, vol. 85, no. 3, pp. 329-350, 1982. · Zbl 0506.60058 · doi:10.1007/BF01208718
[31] W. Kirsch and F. Martinelli, “Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians,” Communications in Mathematical Physics, vol. 89, no. 1, pp. 27-40, 1983. · Zbl 0517.60071 · doi:10.1007/BF01219524
[32] W. Kirsch and B. Metzger, “The integrated density of states for random Schrödinger operators,” in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, vol. 76 of Proc. Sympos. Pure Math., pp. 649-696, Amer. Math. Soc., Providence, RI, USA, 2007. · Zbl 1208.82028
[33] W. Kirsch and B. Simon, “Lifshitz tails for periodic plus random potentials,” Journal of Statistical Physics, vol. 42, no. 5-6, pp. 799-808, 1986. · Zbl 0629.60077 · doi:10.1007/BF01010445
[34] W. Kirsch and S. Warzel, “Lifshits tails caused by anisotropic decay: the emergence of a quantum-classical regime,” Mathematical Physics, Analysis and Geometry, vol. 8, no. 3, pp. 257-285, 2005. · Zbl 1093.82011 · doi:10.1007/s11040-005-0582-0
[35] W. Kirsch and S. Warzel, “Anderson localization and Lifshits tails for random surface potentials,” Journal of Functional Analysis, vol. 230, no. 1, pp. 222-250, 2006. · Zbl 1127.82033 · doi:10.1016/j.jfa.2005.05.009
[36] F. Klopp, “Weak disorder localization and Lifshitz tails: continuous Hamiltonians,” Annales Henri Poincaré, vol. 3, no. 4, pp. 711-737, 2002. · Zbl 1016.60095 · doi:10.1007/s00023-002-8633-6
[37] F. Klopp and L. Pastur, “Lifshitz tails for random Schrödinger operators with negative singular Poisson potential,” Communications in Mathematical Physics, vol. 206, no. 1, pp. 57-103, 1999. · Zbl 0937.60098 · doi:10.1007/s002200050698
[38] H. Leschke and S. Warzel, “Quantum-classical transitions in Lifshitz tails with magnetic fields,” Physical Review Letters, vol. 92, no. 8, Article ID 086402, 4 pages, 2004. · doi:10.1103/PhysRevLett.92.086402
[39] S. Nakamura, “Lifshitz tail for Schrödinger operator with random magnetic field,” Communications in Mathematical Physics, vol. 214, no. 3, pp. 565-572, 2000. · Zbl 1079.82537 · doi:10.1007/PL00001016
[40] H. Ôkura, “An asymptotic property of a certain Brownian motion expectation for large time,” Proceedings of the Japan Academy, Series A, vol. 57, no. 3, pp. 155-159, 1981. · Zbl 0496.60081 · doi:10.3792/pjaa.57.155
[41] L. A. Pastur, “The behavior of certain Wiener integrals as t\rightarrow 1 and the density of states of Schrödinger equations with random potential,” Teoreticheskaya i Matematicheskaya Fizika, vol. 32, no. 1, pp. 88-95, 1977. · Zbl 0353.60053
[42] L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, vol. 297 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1992. · Zbl 0752.47002
[43] B. Simon, “Lifschitz tails for the Anderson model,” Journal of Statistical Physics, vol. 38, no. 1-2, pp. 65-76, 1985. · doi:10.1007/BF01017848
[44] P. Stollmann, “Lifshitz asymptotics via linear coupling of disorder,” Mathematical Physics, Analysis and Geometry, vol. 2, no. 3, pp. 279-289, 1999. · Zbl 0956.60071 · doi:10.1023/A:1009845206542
[45] X. Chen and J. Rosen, “Large deviations and renormalization for Riesz potentials of stable intersection measures,” Stochastic Processes and their Applications, vol. 120, no. 9, pp. 1837-1878, 2010. · Zbl 1226.60042 · doi:10.1016/j.spa.2010.05.006
[46] M. D. Donsker and S. R. S. Varadhan, “Asymptotics for the Wiener sausage,” Communications on Pure and Applied Mathematics, vol. 28, no. 4, pp. 525-565, 1975. · Zbl 0351.60070 · doi:10.1002/cpa.3160280505
[47] G. Fikhtengoltz, A Course in Differential and Integral Calculus, Gostekhizdat, Moscow, Russia, 1948.
[48] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, USA, 1970. · Zbl 0193.18401
[49] H. H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Springer, New York, NY, USA, 1971. · Zbl 0217.16002
[50] M. Kac, “On some connections between probability theory and differential and integral equations,” in Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp. 189-215, University of California Press, Berkeley and Los Angeles, 1950. · Zbl 0045.07002
[51] X. Chen, Random Walk Intersections: Large Deviations and Related Topics, vol. 157 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2010.
[52] M. D. Donsker and S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. I. II,” Communications on Pure and Applied Mathematics, vol. 28, pp. 1-47, 1975. · Zbl 0323.60069 · doi:10.1002/cpa.3160280102
[53] J. Feng and T. G. Kurtz, Large Deviations for Stochastic Processes, vol. 131 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2006. · Zbl 1113.60002
[54] R. Bass, X. Chen, and J. Rosen, “Large deviations for Riesz potentials of additive processes,” Annales de l’Institut Henri Poincaré Probabilités et Statistiques, vol. 45, no. 3, pp. 626-666, 2009. · Zbl 1181.60035 · doi:10.1214/08-AIHP181
[55] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 6, Academic Press, London, UK, 1975. · Zbl 0314.46030
[56] I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, USA, 1969. · Zbl 0181.13503
[57] J. L. Doob, Stochastic Processes, John Wiley & Sons, New York, NY, USA, 1953. · Zbl 0053.26802
[58] R. J. Adler, The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistic, John Wiley & Sons, Chichester, UK, 1981. · Zbl 0478.60059
[59] Z. Shi, “Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times,” Journal of Theoretical Probability, vol. 9, no. 4, pp. 915-929, 1996. · Zbl 0959.60080 · doi:10.1007/BF02214257
[60] E. T. Copson, Asymptotic Expansions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 55, Cambridge University Press, New York, NY, USA, 1965. · Zbl 0123.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.