×

zbMATH — the first resource for mathematics

On the nonemptiness and compactness of the solution sets for vector variational inequalities. (English) Zbl 1229.90231
Summary: We investigate conditions for nonemptiness and compactness of the sets of solutions of pseudomonotone vector variational inequalities by using the concept of asymptotical cones. We show that a pseudomonotone vector variational inequality has a nonempty and compact solution set provided that it is strictly feasible. We also obtain some necessary conditions for the set of solutions of a pseudomonotone vector variational inequality to be nonempty and compact.

MSC:
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslender A, Asymptotic Cones and Functions in Optimization and Variational Inequalities (2003) · Zbl 1017.49001
[2] DOI: 10.1007/BF00940320 · Zbl 0795.49010 · doi:10.1007/BF00940320
[3] DOI: 10.1016/0022-247X(90)90223-3 · Zbl 0719.90078 · doi:10.1016/0022-247X(90)90223-3
[4] DOI: 10.1006/jmaa.2000.7389 · Zbl 0990.49010 · doi:10.1006/jmaa.2000.7389
[5] Crouzeix JP, Math. Prog. Ser. A 78 pp 305– (1997)
[6] DOI: 10.1007/s101070050097 · Zbl 0937.49003 · doi:10.1007/s101070050097
[7] Facchinei F, Finite-Dimensional Variational Inequalities and Complementarity Problems (2003) · Zbl 1062.90002
[8] DOI: 10.1007/s001860400375 · Zbl 1087.90076 · doi:10.1007/s001860400375
[9] DOI: 10.1007/s10957-006-9073-0 · Zbl 1278.90402 · doi:10.1007/s10957-006-9073-0
[10] DOI: 10.1016/j.na.2008.02.100 · Zbl 1158.49011 · doi:10.1016/j.na.2008.02.100
[11] Giannessi F, Variational Inequalities and Complementarity Problems pp 151– (1980)
[12] Giannessi F, New Trends in Mathematical Programming pp 93– (1998)
[13] DOI: 10.1007/BF01582255 · Zbl 0734.90098 · doi:10.1007/BF01582255
[14] DOI: 10.1007/s10114-005-0918-5 · Zbl 1126.47049 · doi:10.1007/s10114-005-0918-5
[15] DOI: 10.1017/S1446788700014609 · Zbl 1170.90498 · doi:10.1017/S1446788700014609
[16] DOI: 10.1016/j.na.2005.01.021 · Zbl 1135.90411 · doi:10.1016/j.na.2005.01.021
[17] DOI: 10.1007/BF00932654 · Zbl 0304.49026 · doi:10.1007/BF00932654
[18] DOI: 10.1006/jmaa.1997.5192 · Zbl 0878.49006 · doi:10.1006/jmaa.1997.5192
[19] DOI: 10.1016/j.na.2005.03.050 · Zbl 1224.49047 · doi:10.1016/j.na.2005.03.050
[20] DOI: 10.1016/S0362-546X(97)00578-6 · Zbl 0956.49007 · doi:10.1016/S0362-546X(97)00578-6
[21] DOI: 10.1007/BF01582261 · Zbl 0726.90093 · doi:10.1007/BF01582261
[22] DOI: 10.1023/B:JOTA.0000026137.18526.7a · Zbl 1140.90492 · doi:10.1023/B:JOTA.0000026137.18526.7a
[23] DOI: 10.1007/BF00940446 · Zbl 0796.49014 · doi:10.1007/BF00940446
[24] Yang XQ, Nonlinear Anal. 95 pp 729– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.