×

zbMATH — the first resource for mathematics

Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. (English) Zbl 1230.37079
Consider the second order Hamiltonian system \[ \ddot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0\tag{HS}, \] where \(L\in C(R,R^N)\) is a symmetric matrix valued function and \(W \in C^1(R\times R^N, R)\). A nonzero solution \(u\) of (HS) is said to be homoclinic (to 0) if \(u(t)\rightarrow 0\) as \(|t|\rightarrow\infty\).
The authors prove that problem (1) has infinitely many homoclinic orbits under the following conditions:
(H
\(L \in C(R,R^{N{^2}})\) is a symmetric and positively definite matrix for all \(t\in R\) and there exists a continuous function \(l:R\rightarrow R\) such that \(l(t)>0\) for all \(t\in R\) and \[ (L(t)x,x)\geq l(t)|x|^2,\;l(t)\rightarrow\infty\;\text{as}\;|t|\rightarrow\infty. \]
(H
\(W(t,x)=a(t)|x|^r\), where \(a:R\rightarrow R^+\) is a continuous function such that \[ a\in L^{\frac{2}{2-r}}(R,R) \] and \(1<r<2\) is a constant.
In fact, in Theorem 1.2 the condition respect to \(a\) is not sufficient and the condition that \(a\) is positive is also used in the proof of the Lemma 3.1.
Theorem 1.2 in this paper generalizes the result in [Z. Zhang and R. Yuan, Nonlinear Anal., Theory Methods Appl. 71, No. 9, A, 4125–4130 (2009; Zbl 1173.34330)], in which \(a\) is a positive continuous function such that \[ a\in L^2(R, R)\cap L^{\frac{2}{2-r}}(R, R). \]

MSC:
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer · Zbl 0676.58017
[2] Rabinowitz, P.H., Variational methods for Hamiltonian systems, (), Part 1, Chapter 14, pp. 1091-1127 · Zbl 1048.37055
[3] Tang, C., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. amer. math. soc., 126, 3263-3270, (1998) · Zbl 0902.34036
[4] Bonanno, G.; Livrea, R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. math. anal. appl., 363, 627-638, (2010) · Zbl 1192.37084
[5] Cordaro, G.; Rao, G., Three periodic solutions for perturbed second order Hamiltonian systems, J. math. anal. appl., 359, 780-785, (2009) · Zbl 1185.34048
[6] Zhang, X.; Zhou, Y., Periodic solutions of non-autonomous second order Hamiltonian systems, J. math. anal. appl., 345, 929-933, (2008) · Zbl 1173.34329
[7] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. semin. mat. univ. Padova, 89, 177-194, (1993) · Zbl 0806.58018
[8] Paturel, E., Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. var. partial differential equations, 12, 117-143, (2001) · Zbl 1052.37049
[9] Izydorek, M.; Janczewska, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. differential equations, 219, 375-389, (2005) · Zbl 1080.37067
[10] Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499, (1991) · Zbl 0707.58022
[11] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential integral equations, 5, 1115-1120, (1992) · Zbl 0759.58018
[12] Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 1095-1113, (1995) · Zbl 0840.34044
[13] Ou, Z.; Tang, C., Existence of homoclinic solutions for the second order Hamiltonian systems, J. math. anal. appl., 291, 203-213, (2004) · Zbl 1057.34038
[14] Tang, X.; Xiao, L., Homoclinic solutions for non-autonomous second-order Hamiltonian systems with a coercive potential, J. math. anal. appl., 351, 586-594, (2009) · Zbl 1153.37408
[15] Tang, X.; Lin, X., Homoclinic solutions for a class of second order Hamiltonian systems, J. math. anal. appl., 354, 539-549, (2009) · Zbl 1179.37082
[16] Yang, J.; Zhang, F., Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear anal. real world appl., 10, 1417-1423, (2009) · Zbl 1162.34328
[17] Zhang, Z.; Yuan, R., Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear anal., 71, 4125-4130, (2009) · Zbl 1173.34330
[18] Zhang, Z.; Yuan, R., Homoclinic solutions for some second-order non-autonomous systems, Nonlinear anal., 71, 5790-5798, (2009) · Zbl 1203.34068
[19] Zhang, Q.; Liu, C., Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear anal., 72, 894-903, (2010) · Zbl 1178.37063
[20] Nieto, J.J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear anal. real world appl., 10, 680-690, (2009) · Zbl 1167.34318
[21] Sun, J.; Chen, H.; Nieto, J.J.; Otero-Novoa, M., Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear anal., 72, 4575-4586, (2010) · Zbl 1198.34036
[22] Sun, J.; Chen, H.; Yang, L., The existence and multiplicity of solutions for an impulsive differential equation with two parameters via variational method, Nonlinear anal., 73, 440-449, (2010) · Zbl 1198.34037
[23] Zou, W., Variant Fountain theorems and their applications, Manuscripta math., 104, 343-358, (2001) · Zbl 0976.35026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.