# zbMATH — the first resource for mathematics

Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. (English) Zbl 1230.37079
Consider the second order Hamiltonian system $\ddot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0\tag{HS},$ where $$L\in C(R,R^N)$$ is a symmetric matrix valued function and $$W \in C^1(R\times R^N, R)$$. A nonzero solution $$u$$ of (HS) is said to be homoclinic (to 0) if $$u(t)\rightarrow 0$$ as $$|t|\rightarrow\infty$$.
The authors prove that problem (1) has infinitely many homoclinic orbits under the following conditions:
(H
$$L \in C(R,R^{N{^2}})$$ is a symmetric and positively definite matrix for all $$t\in R$$ and there exists a continuous function $$l:R\rightarrow R$$ such that $$l(t)>0$$ for all $$t\in R$$ and $(L(t)x,x)\geq l(t)|x|^2,\;l(t)\rightarrow\infty\;\text{as}\;|t|\rightarrow\infty.$
(H
$$W(t,x)=a(t)|x|^r$$, where $$a:R\rightarrow R^+$$ is a continuous function such that $a\in L^{\frac{2}{2-r}}(R,R)$ and $$1<r<2$$ is a constant.
In fact, in Theorem 1.2 the condition respect to $$a$$ is not sufficient and the condition that $$a$$ is positive is also used in the proof of the Lemma 3.1.
Theorem 1.2 in this paper generalizes the result in [Z. Zhang and R. Yuan, Nonlinear Anal., Theory Methods Appl. 71, No. 9, A, 4125–4130 (2009; Zbl 1173.34330)], in which $$a$$ is a positive continuous function such that $a\in L^2(R, R)\cap L^{\frac{2}{2-r}}(R, R).$

##### MSC:
 37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
Full Text:
##### References:
  Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer · Zbl 0676.58017  Rabinowitz, P.H., Variational methods for Hamiltonian systems, (), Part 1, Chapter 14, pp. 1091-1127 · Zbl 1048.37055  Tang, C., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. amer. math. soc., 126, 3263-3270, (1998) · Zbl 0902.34036  Bonanno, G.; Livrea, R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. math. anal. appl., 363, 627-638, (2010) · Zbl 1192.37084  Cordaro, G.; Rao, G., Three periodic solutions for perturbed second order Hamiltonian systems, J. math. anal. appl., 359, 780-785, (2009) · Zbl 1185.34048  Zhang, X.; Zhou, Y., Periodic solutions of non-autonomous second order Hamiltonian systems, J. math. anal. appl., 345, 929-933, (2008) · Zbl 1173.34329  Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. semin. mat. univ. Padova, 89, 177-194, (1993) · Zbl 0806.58018  Paturel, E., Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. var. partial differential equations, 12, 117-143, (2001) · Zbl 1052.37049  Izydorek, M.; Janczewska, J., Homoclinic solutions for a class of second order Hamiltonian systems, J. differential equations, 219, 375-389, (2005) · Zbl 1080.37067  Rabinowitz, P.H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499, (1991) · Zbl 0707.58022  Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential integral equations, 5, 1115-1120, (1992) · Zbl 0759.58018  Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear anal., 25, 1095-1113, (1995) · Zbl 0840.34044  Ou, Z.; Tang, C., Existence of homoclinic solutions for the second order Hamiltonian systems, J. math. anal. appl., 291, 203-213, (2004) · Zbl 1057.34038  Tang, X.; Xiao, L., Homoclinic solutions for non-autonomous second-order Hamiltonian systems with a coercive potential, J. math. anal. appl., 351, 586-594, (2009) · Zbl 1153.37408  Tang, X.; Lin, X., Homoclinic solutions for a class of second order Hamiltonian systems, J. math. anal. appl., 354, 539-549, (2009) · Zbl 1179.37082  Yang, J.; Zhang, F., Infinitely many homoclinic orbits for the second-order Hamiltonian systems with super-quadratic potentials, Nonlinear anal. real world appl., 10, 1417-1423, (2009) · Zbl 1162.34328  Zhang, Z.; Yuan, R., Homoclinic solutions for a class of non-autonomous subquadratic second-order Hamiltonian systems, Nonlinear anal., 71, 4125-4130, (2009) · Zbl 1173.34330  Zhang, Z.; Yuan, R., Homoclinic solutions for some second-order non-autonomous systems, Nonlinear anal., 71, 5790-5798, (2009) · Zbl 1203.34068  Zhang, Q.; Liu, C., Infinitely many homoclinic solutions for second order Hamiltonian systems, Nonlinear anal., 72, 894-903, (2010) · Zbl 1178.37063  Nieto, J.J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear anal. real world appl., 10, 680-690, (2009) · Zbl 1167.34318  Sun, J.; Chen, H.; Nieto, J.J.; Otero-Novoa, M., Multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear anal., 72, 4575-4586, (2010) · Zbl 1198.34036  Sun, J.; Chen, H.; Yang, L., The existence and multiplicity of solutions for an impulsive differential equation with two parameters via variational method, Nonlinear anal., 73, 440-449, (2010) · Zbl 1198.34037  Zou, W., Variant Fountain theorems and their applications, Manuscripta math., 104, 343-358, (2001) · Zbl 0976.35026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.