×

zbMATH — the first resource for mathematics

Rotation-free isogeometric thin shell analysis using PHT-splines. (English) Zbl 1230.74230
Summary: This paper presents a novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines). The method exploits the flexibility of T-meshes for local refinement. The main advantage of the PHT-splines in the context of thin shell theory is that it achieves \(C^{1}\) continuity, so the Kirchhoff-Love theory can be used in pristine form. No rotational degrees of freedom are needed. Numerical results show the excellent performance of the present method.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74K25 Shells
65D07 Numerical computation using splines
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bischoff, M.; Bletzinger, K.-U.; Wall, W.A.; Ramm, E., Models and finite elements for thin-walled structures, (2004), John Wiley and Sons New York
[2] Wang, D.; Chen, J.S., A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration, Int. J. numer. methods engrg., 74, 368-390, (2008) · Zbl 1159.74460
[3] Wang, D.; Lin, Z., Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration, Comput. mech., 46, 703-719, (2010) · Zbl 1398.74157
[4] Krysl, Petr; Belytschko, Ted, Analysis of thin shells by the element free Galerkin method, Int. J. solids struct., 33, 20-22, 3057-3080, (1996) · Zbl 0929.74126
[5] Bathe, K.J.; Dvorkin, E., Our discrete Kirchhoff and isoparametric shell elements for non-linear analysis – an assessment, Comput. struct., 16, 89-98, (1983) · Zbl 0498.73076
[6] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell analysis, Int. J. numer. methods engrg., 47, 2039-2072, (2000) · Zbl 0983.74063
[7] Millan, D.; Rosolen, A.; Arroyo, M., Thin shell analysis from scattered points with maximum-entropy approximants, Int. J. numer. methods engrg., 85, 6, 723-751, (2011) · Zbl 1217.74147
[8] Noëls, L.; Radovitzky, R., A new discontinuous Galerkin method for kirchhoff – love shells, Comput. methods appl. mech. engrg., 197, 2901-2929, (2008) · Zbl 1194.74456
[9] Rabczuk, T.; Gracie, R.; Song, J.H.; Belytschko, T., Immersed particle method for fluid-structure interaction, Int. J. numer. methods engrg., 81, 1, 48-71, (2010) · Zbl 1183.74367
[10] Wang, D.; Chen, J.S., Locking-free stabilized conforming nodal integration for meshfree mindlin – reissner plate formulation, Comput. methods appl. mech. engrg., 193, 1065-1083, (2004) · Zbl 1060.74675
[11] Chen, J.S.; Wang, D., A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates, Int. J. numer. methods engrg., 68, 151-172, (2006) · Zbl 1130.74055
[12] Ubach, P.-A.; Onate, E., New rotation-free finite element shell triangle accurately using geometrical data, Comput. methods appl. mech. engrg., 199, 5-8, 383-391, (2010) · Zbl 1227.74100
[13] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, Stephane; Debongnie, J.F., A smoothed finite element method for plate analysis, Comput. methods appl. mech. engrg., 197, 1184-1203, (2008) · Zbl 1159.74434
[14] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method free and forced vibration analysis of solids using triangular meshes, J. comput. appl. math., 233, 9, 2112-2135, (2010) · Zbl 1423.74910
[15] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method with stabilized discrete shear gap technique for analysis of mindlin – reissner plates, Finite elements anal. des., 47, 5, 519-535, (2011)
[16] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput. methods appl. mech. engrg., 198, 2, 165-177, (2008) · Zbl 1194.74453
[17] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill New York · Zbl 0114.40801
[18] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[19] Austin Cottrell, J.; Hughes, Thomas J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley New York · Zbl 1378.65009
[20] Hughes, T.J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. methods appl. mech. engrg., 197, 4104-4124, (2008) · Zbl 1194.74114
[21] Bazilevs, Y.; Calo, V.M.; Cottrell, J.A.; Evans, J.A.; R Hughes, T.J.; Lipton, S.; Scottand, M.A.; Sederberg, T.W., Isogeometric analysis using T-splines, Comput. methods appl. mech. engrg., 199, 229-263, (2010) · Zbl 1227.74123
[22] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[23] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B.; Spielman, T.; Tezduyar, T.E., 3D simulation of wind turbine rotors at full scale. part I: geometry modeling and aerodynamics, Int. J. numer. methods engrg., 65, 1-3, 207-235, (2011) · Zbl 1428.76086
[24] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. part II: fluid structure interaction modeling with composite blades, Int. J. numer. methods engrg., 65, 1-3, 236-253, (2011) · Zbl 1428.76087
[25] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. engrg., 195, 5257-5297, (2006) · Zbl 1119.74024
[26] Cottrell, J.A.; R Hughes, T.J.; Reali, A., Studies of refinement and continuity in geometry and mesh refinement, Comput. methods appl. mech. engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[27] Sederberg, T.W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccs, ACM trans. graph., 22, 477-484, (2003)
[28] Sederberg, T.W.; Cardon, D.L.; Finnigan, G.T.; North, N.S.; Zheng, J.; Lyche, T., T-splines and local refinement, ACM trans. graph., 23, 276-283, (2004)
[29] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. methods appl. mech. engrg., 199, 437-1445, (2009) · Zbl 1231.65027
[30] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. methods appl. mech. engrg., 200, 21-22, 1892-1908, (2011) · Zbl 1228.74091
[31] Deng, Jiansong; Chen, Falai; Li, Xin; Hu, Changqi; Tong, Weihua; Yang, Zhouwang; Feng, Yuyu, Polynomial splines over hierarchical T-meshes, Graph. models, 70, 76-86, (2008)
[32] Li, Xin; Deng, Jiansong; Chen, Falai, Surfacem odeling with polynomial splines over hierarchical T-meshes, Visual comput., 23, 1027-1033, (2007)
[33] Li, Xin; Deng, Jiansong; Chen, Falai, Polynomial splines over general T-meshes, Visual comput., 26, 277-286, (2010)
[34] Rabczuk, T.; Areias, P.M.A., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Comput. methods appl. mech. engrg., 16, 2, 115-130, (2006) · Zbl 1196.74137
[35] Rabczuk, T.; Areias, P.M.A.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, Int. J. numer. methods engrg., 72, 524-548, (2007) · Zbl 1194.74537
[36] Benson, D.J.; Bazilevs, Y.; Hsu, M.C.; Hughes, T.J.R., Isogeometric shell analysis: the reissner – mindlin shell, Comput. methods appl. mech. engrg., 199, 276-289, (2010) · Zbl 1227.74107
[37] Benson, D.J.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T.J.R., A large deformation, rotation-free, isogeometric shell, Comput. methods appl. mech. engrg., 200, 13-16, 1367-1378, (2011) · Zbl 1228.74077
[38] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with kirchhoff – love elements, Comput. methods appl. mech. engrg., 198, 3902-3914, (2009) · Zbl 1231.74422
[39] Kiendl, J.; Bazilevs, Y.; Hsu, M.-C.; Wüchner, R.; Bletzinger, K.-U., The bending strip method for isogeometric analysis of kirchhoff – love shell structures comprised of multiple patches, Comput. methods appl. mech. engrg., 199, 2403-2416, (2010) · Zbl 1231.74482
[40] Uhm, Tae-Kyoung; Youn, Sung-Kie, T-spline finite element method for the analysis of shell structures, Int. J. numer. methods engrg., 80, 507-536, (2009) · Zbl 1176.74198
[41] Piegl, L.; Tiller, W., The NURBS book, (1997), Springer-Verlag Berlin · Zbl 0868.68106
[42] Deng, Jiansong; Chen, Falai; Feng, Yuyu, Dimensions of spline spaces over T-meshes, J. comput. appl. math., 194, 267-283, (2006) · Zbl 1093.41006
[43] Stogner, R.H.; Carey, G.F.; Murray, B.T., Approximation of cahn – hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements, Int. J. numer. methods engrg., 76, 636-661, (2008) · Zbl 1195.74132
[44] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.J., Stress projection for membrane and shear locking in shell finite elements, Comput. methods appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[45] MacNeal, R.H.; Harder, R.L., A proposed standard set of problems to test finite element accuracy, Finite elements anal. des., 1, 3-20, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.