×

zbMATH — the first resource for mathematics

On the solution of the coupled Navier-Stokes and Darcy equations. (English) Zbl 1230.76023
Summary: This paper introduces and analyzes two mathematical models for coupling the incompressible Navier-Stokes equations with the porous media flow equations. A numerical method that uses continuous finite elements in the incompressible flow region and discontinuous finite elements in the porous medium, is proposed. Existence and uniqueness results under small data condition of the numerical solution are proved. Optimal a priori error estimates are derived. Numerical examples comparing the two models under varying physical parameters are provided.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
76M30 Variational methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R., Sobolev spaces, (1975), Academic Press New York · Zbl 0314.46030
[2] Arnold, D.N., An interior penalty finite element method with discontinuous elements, SIAM J. numer. anal., 19, 742-760, (1982) · Zbl 0482.65060
[3] Arnold, D.N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344, (1982) · Zbl 0593.76039
[4] Beavers, G.S.; Joseph, D.D., Boundary conditions at a naturally impermeable wall, J. fluid mech., 30, 197-207, (1967)
[5] Burman, E.; Hansbo, P., A unified stabilized method for Stokes and darcy’s equations, J. comput. appl. math., 198, 1, 35-51, (2007) · Zbl 1101.76032
[6] Cesmelioglu, A.; Rivière, B., Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. sci. comput., 40, 115-140, (2009) · Zbl 1203.76078
[7] Ciarlet, P., The finite element method for elliptic problems, (1978), North-Holland Amsterdam
[8] P. Chidyagwai, B. Rivière, Analysis of two mathematical models for the coupled Navier-Stokes/Darcy problem, Technical Report, Computational and Applied Mathematics Department, Rice University, TR09-14, 2009.
[9] Dawson, C.; Sun, S.; Wheeler, M.F., Compatible algorithms for coupled flow and transport, Comput. meth. appl. mech. engrg., 193, 2565-2580, (2004) · Zbl 1067.76565
[10] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004.
[11] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. numer. math., 43, 57-74, (2001) · Zbl 1023.76048
[12] Discacciati, M.; Quarteroni, A., Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, (), 3-20 · Zbl 1254.76051
[13] Discacciati, M.; Quarteroni, A.; Valli, A., Robin – robin domain decomposition methods for the stokes – darcy coupling, SIAM J. numer. anal., 45, 3, 1246-1268, (2007) · Zbl 1139.76030
[14] Epshteyn, Y.; Rivière, B., Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. comput. appl. math., 206, 843-872, (2007) · Zbl 1141.65078
[15] Girault, V.; Raviart, P.-A., Finite element methods for navier – stokes equations: theory and algorithms, vol. 5, (1986), Springer-Verlag
[16] Girault, V.; Rivière, B., DG approximation of coupled navier – stokes and Darcy equations by beaver – joseph – saffman interface condition, SIAM J. numer. anal., 47, 2052-2089, (2009) · Zbl 1406.76082
[17] Girault, V.; Rivière, B.; Wheeler, M., A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and navier – stokes problems, Math. comput., 74, 53-84, (2004) · Zbl 1057.35029
[18] Hanspal, N.S.; Waghode, A.N.; Nassehi, V.; Wakeman, R.J., Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations, Transport porous med., 64, 1, 1573-1634, (2006) · Zbl 1309.76195
[19] Heywood, J.G.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible navier – stokes equations, Int. J. numer. methods fluids, 22, 325-352, (1996) · Zbl 0863.76016
[20] Hood, P.; Taylor, C., A numerical solution of the navier – stokes equations using the finite element technique, Comput. fluids, 1, 73-100, (1973) · Zbl 0328.76020
[21] Houston, P.; Schwab, C.; Süli, E., Discontinuous hp-finite element methods for advection – diffusion problems, SIAM J. numer. anal., 39, 6, 2133-2163, (2002) · Zbl 1015.65067
[22] Jäger, W.; Mikelić, A., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. appl. math., 60, 1111-1127, (2000) · Zbl 0969.76088
[23] Layton, W.J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. numer. anal., 40, 6, 2195-2218, (2003) · Zbl 1037.76014
[24] Rivière, B., Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. sci. comput., 22, 479-500, (2005) · Zbl 1065.76143
[25] Rivière, B., Analysis of a multi-numerics/multi-physics problem, Numer. math. adv. appl., 726-735, (2004) · Zbl 1216.76033
[26] Rivière, B.; Wheeler, M.F.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. numer. anal., 39, 3, 902-931, (2001) · Zbl 1010.65045
[27] Rivière, B.; Yotov, I., Locally conservative coupling of Stokes and Darcy flow, SIAM J. numer. anal., 42, 1959-1977, (2005) · Zbl 1084.35063
[28] Saffman, P., On the boundary condition at the surface of a porous media, Stud. appl. math., 50, 292-315, (1971)
[29] Wheeler, M.F., An elliptic collocation-finite element method with interior penalties, SIAM J. numer. anal., 15, 1, 152-161, (1978) · Zbl 0384.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.