# zbMATH — the first resource for mathematics

Sharp bounds for Seiffert mean in terms of contraharmonic mean. (English) Zbl 1231.26034
Summary: We find the greatest value $$\alpha$$ and the least value $$\beta$$ in $$(1/2, 1)$$ such that the double inequality $$C(\alpha a + (1 - \alpha) b, \alpha b + (1 - \alpha)a) < T(a, b) < C(\beta a + (1 - \beta)b, \beta b + (1 - \beta)a)$$ holds for all $$a, b > 0$$ with $$a \neq b$$. Here, $$T(a, b) = (a - b)/[2 \arctan ((a - b)/(a + b))]$$ and $$C(a, b) = (a^2 + b^2)/(a + b)$$ are the Seiffert and contraharmonic means of $$a$$ and $$b$$, respectively.

##### MSC:
 26E60 Means 26D07 Inequalities involving other types of functions
##### Keywords:
convex combination
Full Text:
##### References:
  Y.-M. Chu, M.-K. Wang, S.-L. Qiu, and Y.-F. Qiu, “Sharp generalized Seiffert mean bounds for Toader mean,” Abstract and Applied Analysis, vol. 2011, Article ID 605259, 8 pages, 2011. · Zbl 1226.26017 · doi:10.1155/2011/605259  S.-W. Hou and Y.-M. Chu, “Optimal convex combination bounds of root-square and harmonic root-square means for Seiffert mean,” International Journal of Mathematical Analysis, vol. 5, no. 39, pp. 1897-1904, 2011. · Zbl 1245.26015  H. Liu and X.-J. Meng, “The optimal convex combination bounds for Seiffert’s mean,” Journal of Inequalities and Applications, vol. 2011, Article ID 686834, 9 pages, 2011. · Zbl 1221.26037 · doi:10.1155/2011/686834 · eudml:225585  J. Pahikkala, “On contraharmonic mean and Phythagorean triples,” Elementary Math, vol. 65, no. 2, pp. 62-67, 2010. · Zbl 1190.11023 · doi:10.4171/EM/141 · www.ems-ph.org  S. Toader and Gh. Toader, “Complementaries of Greek means with respect to Gini means,” International Journal of Applied Mathematics & Statistics, vol. 11, no. N07, pp. 187-192, 2007. · Zbl 1157.26324  E. Neuman and J. Sáandor, “On the Schwab-Borchardt mean II,” Mathematica Pannonica, vol. 17, no. 1, pp. 49-59, 2006. · Zbl 1100.26011 · eudml:222546  Y. Lim, “The inverse mean problem of geometric mean and contraharmonic means,” Linear Algebra and its Applications, vol. 408, no. 1-3, pp. 221-229, 2005. · Zbl 1096.15005 · doi:10.1016/j.laa.2005.06.013  S. Toader and Gh. Toader, “Generalized complementaries of Greek means,” Pure Mathematics and Applications, vol. 15, no. 2-3, pp. 335-342, 2004. · Zbl 1114.26302  E. Neuman and J. Sándor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2, pp. 253-266, 2003. · Zbl 1053.26015 · eudml:228958  J. R. Siler, “Mean crowds and Pythagorean triples,” Fibonacci Quarterly, vol. 36, no. 4, pp. 323-326, 1998. · Zbl 0932.11008  W. N. Anderson Jr., M. E. Mays, T. D. Morley, and G. E. Trapp, “The contraharmonic mean of HSD matrices,” SIAM Journal on Algebraic and Discrete Methods, vol. 8, no. 4, pp. 674-682, 1987. · Zbl 0641.15009 · doi:10.1137/0608056  H. J. Seiffert, “Aufgabe \beta 16,” Die Wurzel, vol. 29, pp. 221-222, 1995.  P. A. Hästö, “A monotonicity property of ratios of symmetric homogeneous means,” Journal of Inequalities in Pure and Applied Mathematics, vol. 3, no. 5, article 71, 23 pages, 2002. · Zbl 1026.26025 · jipam-old.vu.edu.au · eudml:123054  Y.-M. Chu, M.-K. Wang, and Y.-F. Qiu, “An optimal double inequality between power-type Heron and Seiffert means,” Journal of Inequalities and Applications, vol. 2010, Article ID 146945, 11 pages, 2010. · Zbl 1210.26021 · doi:10.1155/2010/146945 · eudml:225080  M.-K. Wang, Y.-F. Qiu, and Y.-M. Chu, “Sharp bounds for Seiffert means in terms of Lehmer means,” Journal of Mathematical Inequalities, vol. 4, no. 4, pp. 581-586, 2010. · Zbl 1204.26053 · files.ele-math.com  Y.-M. Chu, C. Zong, and G.-D. Wang, “Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean,” Journal of Mathematical Inequalities, vol. 5, no. 3, pp. 429-434, 2011. · Zbl 1225.26061 · files.ele-math.com  Y.-M. Chu, M.-K. Wang, and W.-M. Gong, “Two sharp double inequalities for Seiffert mean,” Journal of Inequalities and Applications, vol. 2011, article 44, 2011. · Zbl 1275.26052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.